def generate_citations(radius=3): """Returns a list of text citations associated with some location, word or topic (cluster).""" clicked_on = request.args.get("options") if clicked_on == "location": x_coord = float(request.args.get("xcoord")) y_coord = float(request.args.get("ycoord")) z_coord = float(request.args.get("zcoord")) pmids = Activation.get_pmids_from_xyz(x_coord, y_coord, z_coord, radius) elif clicked_on == "word": word = request.args.get("word") # Get the pmids for a word pmids = StudyTerm.get_pmid_by_term(word) elif clicked_on == "cluster": cluster = request.args.get("cluster") # Get the words for a cluster # Then get the top studies for the words words = TermCluster.get_words_in_cluster(cluster) pmids = StudyTerm.get_pmid_by_term(words) elif clicked_on == "study": pmid = request.args.get("pmid") study = Study.get_study_by_pmid(pmid) # Look for cluster-mate studies pmids = study.get_cluster_mates() citations = Study.get_references(pmids) return jsonify(citations)
def generate_d3(radius=3): """ Returns JSON with xyz at the root node. Test with parameters: 40, -45, -25 (Fusiform face area) """ clicked_on = request.args.get("options") if clicked_on == "location": x_coord = float(request.args.get("xcoord")) y_coord = float(request.args.get("ycoord")) z_coord = float(request.args.get("zcoord")) pmids = Activation.get_pmids_from_xyz(x_coord, y_coord, z_coord, radius) scale = 70000 # Get [(wd, freq), ...] and [wd1, wd2] for most frequent words elif clicked_on == "study": pmid = request.args.get("pmid") study = Study.get_study_by_pmid(pmid) pmids = study.get_cluster_mates() scale = 30000 terms_for_dict, words = StudyTerm.get_terms_by_pmid(pmids) # Optional: transform the terms # Get the top clusters top_clusters = TermCluster.get_top_clusters(words) # Get the cluster-word associations associations = TermCluster.get_word_cluster_pairs(top_clusters, words) # Make the root node: root_dict = {"name": "", "children": []} # Build the terminal nodes (leaves) first using (wd, freq) tuples # Output: {word: {'name': word, 'size': freq}, word2: ... } leaves = {} for (word, freq) in terms_for_dict: if word not in leaves: leaves[word] = {"name": word, "size": freq * scale} else: leaves[word]["size"] += freq * scale # Embed the leaves in the clusters: # Output: {cluster_id: {'name': ID, 'children': [...]}, ... } clusters = {} for (cluster_id, word) in associations: if cluster_id not in clusters: clusters[cluster_id] = {"name": cluster_id, "children": [leaves[word]]} else: clusters[cluster_id]["children"].append(leaves[word]) # Put the clusters in the root dictionary # Output: {'name': root, children: [{'name': id, 'children': []}, ...] for cluster in top_clusters: root_dict["children"].append(clusters[cluster]) return jsonify(root_dict)