def experiment(nSpuriousDims=0, rotation=0): np.random.seed(params['seed']) animal1 = Animal(worldModel=worldModel) eshape = (1, 1 + nSpuriousDims) #base_experience = np.random.random(eshape)*2*np.pi - np.pi base_experience = np.zeros(eshape) e = np.empty(eshape) for i in range(10): sd1 = sd sd2 = sd * 3 e[0, 0] = base_experience[0, 0] + stats.norm.rvs(0, sd1) e[0, 1:] = base_experience[0, 1:] + stats.norm.rvs( 0, sd2, size=(1, nSpuriousDims)) animal1.experience(e, calculate_belief=False) e = base_experience e[0, 0] += rotation b, orientations = animal1.experience(e, calculate_belief=True, orient=True, normalize=False) print() print('nSpuriousDims', nSpuriousDims, 'rotation', rotation) print(b) print(orientations, orientations * 180 / np.pi) return b, orientations
def load_click_info_from_db(): """Loads all the information needed to generate analytics JSON files.""" orgs = Org.list_of_org_objects() animals = Animal.list_of_animal_objects() clicks = Click.list_of_click_objects() click_filters = ClickFilter.list_of_click_filter_objects() return (orgs, animals, clicks, click_filters)
def load_animals(): """Load animal types from u.animal into database.""" print "Animals" Animal.query.delete() for row in open(animal_path): name = row.rstrip() animal = Animal(name=name) db.session.add(animal) db.session.commit()
def create_animal(): response = jsonify({"result": "ok", "details": "ok"}) data = request.get_json() try: new_animal = Animal(**data) db.session.add(new_animal) db.session.commit() except Exception as e: response = jsonify({"result": "error", "details": str(e)}) response.headers.add("Access-Control-Allow-Origin", "*") return response
def load_animals(): """Load animals from u.animal into database.""" print "animals" Animal.query.delete() for row in open('seed_data/u.animal'): row = row.rstrip() animal_id, species_id = row.split('|') animal_id = int(animal_id) animal = Animal(animal_id=animal_id, species_id=species_id) db.session.add(animal) db.session.commit()
def populate_animals(): """Create minimum sample data for the animal table.""" Animal.query.delete() for i, row in enumerate(open('seed_data/dogs.csv')): business_id, name, species, breed, birthday, vet, note, photo_path = row.rstrip( ).split(",") a = Animal(business_id=business_id, name=name, breed=breed, birthday=birthday, vet=vet, note=note, species=species, photo_path=photo_path) db.session.add(a) db.session.commit() return None
def load_animals(animal_filename): """Load colors from seed_data/generic_colors into database.""" # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users Animal.query.delete() #Read generic_colors file and insert data for row in open(animal_filename): row = row.rstrip() animal_id, species_id, breed_id, size_id, user_id, latitude, longitude, timestamp, photo, notes, found, found_by_user_id, gender_id = row.split("|") if found_by_user_id == "None": found_by_user_id = None if found == "True": found = True else: found = False animals = Animal(species_id=species_id, breed_id=breed_id, size_id=size_id, user_id=user_id, latitude=latitude, longitude=longitude, timestamp=timestamp, photo=photo, notes=notes, found=bool(found), found_by_user_id = found_by_user_id, gender_id = gender_id) # We need to add to the session or it won't ever be stored db.session.add(animals) # Once we're done, we should commit our work db.session.commit() #finished the function print("Animals inserted")
def like_pets(): """Save liked pets from search results.""" #get credentials from clicking the like button shelter_id = request.form.get("shelterId") animal = request.form.get("animal") name = request.form.get("name") breed = request.form.get("breeds") age = request.form.get("age") gender = request.form.get("gender") pet_id = request.form.get("petID") size = request.form.get("size") description = request.form.get("description") last_update = request.form.get("lastupdate") liked_pet = Animal(shelter_id=shelter_id, animal=animal, name=name, breed=breed, age=age, gender=gender, pet_id=pet_id, size=size, description=description, last_update=last_update) db.session.add(liked_pet) db.session.commit() # instantiate useranimal object so users can find liked animals through usersanimals table new_user_animal = UserAnimal(user_id=session.get("user_id"), animal=liked_pet) db.session.add(new_user_animal) db.session.commit() results = {"success": True, "message": "Liked!", "pet_id":pet_id} return jsonify(results)
def retornar_consultas(): return [ Consulta(data=registro['data'], servico = registro['servico'], horario = registro['horario'], cliente = Cliente( nome = registro['nome'], email = registro['email'], telefone = registro['telefone'], nome_login = registro['nome_login'], senha = registro['senha'], id = registro['id_cliente']), animal = Animal( nome_dono = registro['nome_dono'], tipo_animal = registro['tipo_animal'], raca = registro['raca'], id = registro['id_animal']), confirma = registro['confirma'], mID = registro['mID']) \ for registro in Dao.db.query("SELECT * FROM consulta \ INNER JOIN animal ON animal.id = consulta.id_animal \ INNER JOIN cliente ON cliente.id = consulta.id_cliente")]
return thetas[ind] #%% simulation nSpuriousDims = 0 c1 = Directional(nSpuriousDims=nSpuriousDims) c2 = NonDirectional(nSpuriousDims=nSpuriousDims) nExperiences = 10 alpha = params['alpha'] distList = [VonMises()] for obj in range(nSpuriousDims): distList.append(Gauss()) worldModel = WorldModel(CRP(alpha), GenericMixed(distList)) animal1 = Animal(worldModel=worldModel) animal2 = Animal(worldModel=worldModel) for i in range(nExperiences): e = c1.rvs() animal1.experience(e, calculate_belief=False) e = c2.rvs() animal2.experience(e, calculate_belief=False) #%% plot experiences figInd = 0 figInd += 1 f = plt.figure(figInd) f.clear() ax = plt.subplot(111, projection='polar')
day5partitions = np.array([ [0, 0, 0], [2, 1, 0], [0, 0, 0], [2, 1, 0], [0, 0, 0], [2, 1, 0], ]) partitions = np.vstack((day1partitions, day1partitions, day1partitions, day4partitions, day5partitions, day5partitions)) #%% alphas = np.power(10., np.arange(1, -50, -1)) posts = np.empty((len(alphas), 3)) * np.nan for idx, alpha in enumerate(alphas): animal = Animal(alpha, observationModelClass=Gauss) for i in range(observations.shape[0]): animal.experience(observations[i, :]) for i in range(3): # for each partition posts[idx, i] = animal.partition_prob(partitions[:, i]) posts #%% figInd += 1 #%% fig = plt.figure(figInd) fig.clear() bar_width = 0.2 idxs = np.array([0, 15, 30]) + 1 #+5 idxs = np.array([0, 20, 40]) + 1 #+5
def experiment(alpha=alpha_default, sd0=sd0_default, sd=sd_default, N=N_default, distance=distance_default): np.random.seed(1) _model = WorldModel(CRP(alpha), Gauss(sigma_0=sd0)) _animal = Animal(worldModel=_model) experiences = np.nan * np.ones((N * nPresentations * 2)) partition1 = np.array([]) partition2 = np.array([]) partitionN = np.array([]) lps = np.nan * np.empty((N, 3)) posts = np.nan * np.empty((N * nPresentations * 2, 3)) similarity = np.nan * np.empty((N, 1)) for i in range(N): c1 = stats.norm(loc=np.array([-distance / 2]), scale=sd * np.ones((1, K))) c2 = stats.norm(loc=np.array([+distance / 2]), scale=sd * np.ones((1, K))) for _i in range(nPresentations): experience1 = c1.rvs() experiences[i * nPresentations * 2 + _i * 2] = experience1 post1 = _animal.experience(experience1) if i + _i == 0: partition1 = np.array([[0]]) partition2 = np.array([[0]]) partitionN = np.array([[0]]) else: partition1 = np.vstack((partition1, 0)) partition2 = np.vstack((partition2, 0)) partitionN = np.vstack( (partitionN, 2 * i * nPresentations + _i)) if i > 0: posts[i * nPresentations * 2 + _i, :] = post1.squeeze() _animal.clusterAssignments = partition2 for _i in range(nPresentations): experience2 = c2.rvs() experiences[i * nPresentations * 2 + _i * 2 + 1] = experience2 post2 = _animal.experience(experience2) partition1 = np.vstack((partition1, 0)) partition2 = np.vstack((partition2, 1)) partitionN = np.vstack( (partitionN, (2 * i + 1) * nPresentations + _i)) if i > 0: posts[i * nPresentations * 2 + nPresentations + _i, :] = post2.squeeze() _animal.clusterAssignments = partition2 #TODO: look over this for what to do about partitions2activity ret = partitions2activity(_animal, experience1, [partition1, partition2], [zeta0, zeta1A, zeta1B]) activity1 = ret[0] tmp_lps = ret[1] ret = partitions2activity(_animal, experience2, [partition1, partition2], [zeta0, zeta1A, zeta1B]) activity2 = ret[0] tmp_lps_2 = ret[1] np.testing.assert_array_equal(tmp_lps, tmp_lps_2) lps[i, 0:2] = tmp_lps lps[i, 0] = _animal.partition_prob(partition1) lps[i, 1] = _animal.partition_prob(partition2) lps[i, 2] = _animal.partition_prob(partitionN) similarity[i] = np.corrcoef(activity1, activity2)[0, 1] return similarity, lps, _animal, partition1, partition2, c1, c2, experiences, posts
plt.style.use('ggplot') try: filename = stripFilename(__file__) except NameError: filename = 'script' figInd = 0 #%% np.random.seed(params['seed']) sd = 0.2 c1 = stats.norm(loc=np.zeros((1, 4)), scale=sd * np.ones((1, 4))) alpha = params['alpha'] worldModel = WorldModel(CRP(alpha), Gauss()) animal1 = Animal(worldModel=worldModel) nExperiences = 20 for i in range(nExperiences): animal1.experience(c1.rvs()) animal1.clusterAssignments = np.zeros((nExperiences, 1)) distance_default = 1 # distance between different features a = 0 b = distance_default post = np.vstack((animal1.belief(np.array([a, a, a, a])).transpose(), animal1.belief(np.array([b, a, a, a])).transpose(), animal1.belief(np.array([b, a, a, b])).transpose(), animal1.belief(np.array([b, b, b, b])).transpose())) #%%
def lost_pet_form(): """Adds a lost pet.""" colors = [] queried_colors = [] queried_breed = [] f = request.files['animal_photo'] f.save('static/seed_photos/' + f.filename) submitted_species = request.form.get('species_quest') submitted_breed = request.form.get('breed_question') if submitted_breed: submitted_breed = submitted_breed else: submitted_breed = 'Unknown' submitted_size = request.form.get('size_quest') submitted_color1 = request.form.get('color1_question') if submitted_color1: colors.append(submitted_color1) submitted_color2 = request.form.get('color2_question') if submitted_color2: colors.append(submitted_color2) submitted_color3 = request.form.get('color3_question') if submitted_color3: colors.append(submitted_color3) submitted_gender = request.form.get('gender_question') if submitted_gender: submitted_gender = submitted_gender else: submitted_gender = 'Unknown' submitted_notes = request.form.get('notes') submitted_latitude = request.form.get('lat') submitted_longitude = request.form.get('lng') timestamp = datetime.now() user_email = session.get('logged_in_user_email') species = Species.query.filter(Species.species == submitted_species).one() size = Size.query.filter(Size.size == submitted_size).one() for color in colors: queried_colors.append(Color.query.filter(Color.color == color).one()) breed = Breed.query.filter(Breed.breed == submitted_breed, Breed.species_id == species.species_id).one() user = User.query.filter(User.email == user_email).one() gender = Gender.query.filter(Gender.gender == submitted_gender).one() animal = Animal(species = species, breed = breed, size = size, notes = submitted_notes, photo = str(f.filename), latitude = submitted_latitude, longitude = submitted_longitude, user_id = user.user_id, timestamp = timestamp, colors = queried_colors, gender = gender ) db.session.add(animal) db.session.commit() print("submitted lost animal to database!") flash("Lost animal has been added to map!") return("it worked. yay")
def retornar_animais(): # cria objeto animal com base no registro da tabela return [Animal(nome_dono = registro['nome_dono'], tipo_animal = registro['tipo_animal'], raca = registro['raca'], id = registro['id']) for registro in Dao.db['animal'].all()]