def main(): project_dir = "/home/sk/senior_project" dataset_dir = project_dir + "/dataset" img_dir = dataset_dir + "/images_pool" target_dir = dataset_dir + "/groundTruth_seg_pool_train" test_dir = dataset_dir + "/groundTruth_seg_pool_test" result_dir = project_dir + "/cnn_ae_" + str(time.time()).split(".")[0] model_dir = result_dir + "/model" pred_dir = result_dir + "/predict_result" if not os.path.exists(result_dir): os.mkdir(result_dir) os.mkdir(model_dir) os.mkdir(pred_dir) TRAIN_IMAGES = [] TRAIN_TARGET_IMAGES = get_file_path(target_dir) VAL_IMAGES = [] VAL_TARGET_IMAGES = get_file_path(test_dir) for train_target_path in TRAIN_TARGET_IMAGES: name = get_file_name(train_target_path) img_path = img_dir + "/" + name + ".jpg" if not os.path.exists(img_path): continue TRAIN_IMAGES.append(img_path) for val_target_path in VAL_TARGET_IMAGES: name = get_file_name(val_target_path) img_path = img_dir + "/" + name + ".jpg" if not os.path.exists(img_path): continue VAL_IMAGES.append(img_path) img_cols = 256 img_rows = 256 img_cols_result = 484 img_rows_result = 304 x_train = load_image(TRAIN_IMAGES) y_train = load_image(TRAIN_TARGET_IMAGES) x_val = load_image(VAL_IMAGES) y_val = load_image(VAL_TARGET_IMAGES) ae = Autoencoder(model_dir=model_dir, pred_dir=pred_dir) ae.train_model(x_train, y_train, x_val, y_val, epochs=2000, batch_size=10)
def main(): project_dir = r"E:\Onedrive\KSIP\MachineLearning" dataset_dir = project_dir + "/dataset" result_dir = project_dir + "/cnn_ae_" + str(time.time()).replace(".","") model_dir = result_dir + "/model" pred_dir = result_dir + "/predict_result" for p in [result_dir, model_dir, pred_dir]: if not os.path.exists(p): os.mkdir(p) INPUT_TRAIN_IMAGES = get_file_path(PATH_INPUT_TRAIN_STFT)[:10000] INPUT_VAL_IMAGES = get_file_path(PATH_INPUT_VALID_STFT)[:1000] TARGET_TRAIN_IMAGES = [] TARGET_VAL_IMAGES = [] for fpath in INPUT_TRAIN_IMAGES: path = fpath.replace(PATH_INPUT_TRAIN_STFT, PATH_TARGET_SEG_STFT) TARGET_TRAIN_IMAGES.append(path) for fpath in INPUT_VAL_IMAGES: path = fpath.replace(PATH_INPUT_VALID_STFT, PATH_TARGET_SEG_STFT) TARGET_VAL_IMAGES.append(path) img_cols = 64 img_rows = 64 img_cols_result = 64 img_rows_result = 64 print_debug("Initial model") x_train = load_image(INPUT_TRAIN_IMAGES) print_debug("Load image traning input done") y_train = load_image(TARGET_TRAIN_IMAGES) print_debug("Load image target input done") x_val = load_image(INPUT_VAL_IMAGES) print_debug("Load image training validation done") y_val = load_image(TARGET_VAL_IMAGES) print_debug("Load image target validation input done") ae = Autoencoder(model_dir=model_dir, pred_dir=pred_dir) ae.train_model(x_train, y_train, x_val, y_val, epochs=1000, batch_size=50)