def main():
    input_size = (416,416)
    image_file = './005767.jpg'
    image = cv2.imread(image_file)
    image_shape = image.shape[:2] 
    tf.reset_default_graph()
    # copy、resize416*416、
    image_cp = preprocess_image(image,input_size)
    #image_cp=np.ones([1,416,416,3]).astype(np.float32)
    image_cp=np.load("005767.npy")#("/home/huawei/chems/bioavailability_model/atlas_data/005767.npy")
    image_cp=np.transpose(image_cp,[0,2,3,1])
    np.save("atoms.npy",image_cp)
    #
    with tf.name_scope('input'):
        tf_image = tf.placeholder(tf.float32,[1,input_size[0],input_size[1],3],name='input_data')
        #meta_variable=tf.placeholder(tf.float32,[1,1,len(class_names)*1024,1],name='meta_weigiht')
    model_output = Darknet(tf_image)
    #meta=np.ones([1,1,len(class_names)*1024,1], dtype=np.float32)
    model_path = "./yolov2_model/yolov2_coco.ckpt"
    saver = tf.train.Saver()
    with tf.Session() as sess:
        #sess.run(model_output,feed_dict={tf_image:image_cp,meta_variable:meta})
        sess.run(tf.global_variables_initializer())
        a=sess.run(model_output.rtn(),feed_dict={tf_image:image_cp})
        a=np.transpose(a,[0,3,1,2])
        #a=np.transpose(a,[0,3,2,1])
        a=np.reshape(a,[-1])[:90]
        #print(a)
        for i in range(90):
        #    print("=============================")
            print(a[i],i)
        saver.save(sess,model_path)
예제 #2
0
def test():
    model = Darknet()
    print('Size of the test set:{}'.format(len(testset)))

    # load ckpt
    ckpt = torch.load(os.path.join(EXPT_DIR, CKPT_FILE))
    model.load_state_dict(ckpt['model'])
    fw = Flow(model, trainset, testset, hyp)
    # write prediction
    fw.validate(batch_size=16)
예제 #3
0
def infer():
    model = Darknet()
    ckpt = torch.load(os.path.join(EXPT_DIR, CKPT_FILE))
    model.load_state_dict(ckpt['model'])
    fw = Flow(model, trainset, testset, hyp)

    # get the indices of unlabeled data
    with open(os.path.join(EXPT_DIR, 'unlabeled.pkl'), 'rb') as f:
        dt = pickle.load(f)
    unlabeled = [i for i in dt]

    fw.infer(unlabeled)
    return
예제 #4
0
def main():
    # Initiate model
    eval_model = Darknet("config/net/resnet_dropout.cfg").to('cuda')
    eval_model.load_state_dict(torch.load("./logs/model/model_params_99.ckpt"))
    precision, recall, AP, f1, ap_class = evaluate(eval_model, ['2012', 'val'],
                                                   [0.5, 0.5, 0.5],
                                                   4,
                                                   True,
                                                   diagnosis_code=1)
    evaluation_metrics = [
        ("val_precision", precision.mean()),
        ("val_recall", recall.mean()),
        ("val_mAP", AP.mean()),
        ("val_f1", f1.mean()),
    ]
    for tag, value in evaluation_metrics:
        print("{}: {}".format(tag, value.item()))
예제 #5
0
def train():
    epochs = 1
    model = Darknet()
    if RESUME_FROM:
        ckpt = torch.load(os.path.join(EXPT_DIR, RESUME_FROM))
        model.load_state_dict(ckpt['model'])

    trainset.augment = True
    fw = Flow(model, trainset, testset, hyp)

    with open(os.path.join(EXPT_DIR, 'labeled.pkl'), 'rb') as f:
        selected = pickle.load(f)

    # if want to try pollution study
    # load labels from EXPT_DIR/labeled.pkl

    for epoch in range(epochs):
        fw.train(epoch, samples=list(selected.keys()), prebias=False)
    return
예제 #6
0
파일: test.py 프로젝트: gddcx/yolov1
def train():
    # Evaluation pipeline
    files = glob.glob(
        os.path.join('/home/iotsc_group1/ChangxingDENG/det/datasets/',
                     'PretrainImageNet', 'ILSVRC2012_img_val', '*.JPEG'))
    files = sorted(files,
                   key=lambda f: f.split('/')[-1].split('_')[-1].split('.')[0])
    labels = loadlabel(
        os.path.join(
            '/home/iotsc_group1/ChangxingDENG/det/datasets/',
            'PretrainImageNet',
            'ILSVRC2012_devkit_t12/data/ILSVRC2012_validation_ground_truth.txt'
        ))
    eval_pipeline = EvalImageDecoderPipeline(files=files, labels=labels)
    eval_pipeline.build()
    eval_pii = pytorchIterator(eval_pipeline,
                               last_batch_policy=LastBatchPolicy.PARTIAL,
                               reader_name='Reader',
                               auto_reset=True)

    model = Darknet()

    state_dict = torch.load(
        'logs/PretrainImageNet_20210316173822_1/13_70056.pth')
    model.load_state_dict(state_dict=state_dict)
    model = model.cuda()

    criterion = nn.CrossEntropyLoss()

    model.eval()
    epoch_loss = 0
    prediciton = []
    target = []
    with torch.no_grad():
        for iter, data in enumerate(eval_pii):
            x = data[0]['data']
            label = data[0]['label'].squeeze(-1).long().cuda()
            output = model(x)
            loss = criterion(output, label).item()
            epoch_loss += loss * x.shape[0]
            prediciton.append(output)
            target.append(label)
        loss = epoch_loss / 50000
        prediciton = torch.cat(prediciton, dim=0)
        target = torch.cat(target, dim=0)
        acc = top1accuracy(prediciton, target)
        acctop5 = top5accuracy(prediciton, target)
        print(f'Top1 ACC: {acc} Top5 ACC {acctop5} loss: {loss}')
class ReadFramesThread:
    def __init__(self, path, args, with_tracking, widget, queue_size=3000):
        # initialize the file video stream along with the boolean
        # used to indicate if the thread should be stopped or not
        self.stream = cv2.VideoCapture(path)
        self.widget = widget
        self.tracking = with_tracking
        if not self.stream:
            if type(path) == int:
                print_info(widget, True, "error",
                           f"Error opening web cam on {path}")
            else:
                print_info(widget, True, "error",
                           f"Error opening video file {path}")
        self.stopped = False
        self.canceled = False
        self.paused = False
        self.ready = False
        # initialize the queue used to store frames read from
        # the video file
        self.Q = Queue(maxsize=queue_size)
        self.imread = Queue(maxsize=queue_size)
        self.Q_processed = Queue(maxsize=queue_size)

        self.inp_dim = int(args.reso)
        self.batch_size = int(args.bs)
        self.names_file = args.names
        self.confidence = float(args.confidence)
        self.nms_thresh = float(args.nms_thresh)
        self.is_classifier = args.is_classifier
        self.classes = load_classes(self.names_file)
        self.num_classes = len(self.classes)

        self.model = None
        self.model_classifier = None
        if self.is_classifier:
            print_info(widget, False, "info",
                       "Loading network for detection.....", -1)
            self.model = Darknet(args.classifier_cfg)
            self.model.load_weights(args.classifier_weights)
            print_info(widget, False, "info",
                       "Network for detection successfully loaded", 0)

            print_info(widget, False, "info",
                       "Loading network for classification.....", -1)
            self.model_classifier = Darknet(args.cfg)
            self.model_classifier.load_weights(args.weights)
            print_info(widget, False, "info",
                       "Network for classification successfully loaded", 0)

            self.model_classifier.net_info["height"] = args.reso
            self.inp_dim = int(self.model_classifier.net_info["height"])
            # If there's a GPU availible, put the model on GPU
            self.cuda = torch.cuda.is_available()
            if self.cuda:
                self.model_classifier.cuda()
            # Set the model in evaluation mode
            self.model_classifier.eval()

            self.classifier_confidence = self.confidence
            self.classifier_nms_thesh = self.nms_thresh
            self.classifier_classes = self.classes
            self.classifier_num_classes = self.num_classes
            self.classifier_names_file = self.names_file
            self.classifier_inp_dim = self.inp_dim

            self.inp_dim = args.classifier_inp_dim
            self.confidence = args.classifier_confidence
            self.nms_thresh = args.classifier_nms_thresh
            self.names_file = args.classifier_names
            self.classes = load_classes(self.names_file)
            self.num_classes = len(self.classes)

        else:
            print_info(widget, False, "info", "Loading network.....", -1)
            self.model = Darknet(args.cfg)
            self.model.load_weights(args.weights)
            print_info(widget, False, "info", "Network successfully loaded", 0)

        self.model.net_info["height"] = self.inp_dim
        assert self.inp_dim % 32 == 0
        assert self.inp_dim > 32

        # If there's a GPU availible, put the model on GPU
        self.cuda = torch.cuda.is_available()
        if self.cuda:
            self.model.cuda()
        # Set the model in evaluation mode
        self.model.eval()

        # if tracking selected, initialize sort class
        self.mot_tracking = None
        if self.tracking == "sort":
            self.mot_tracking = Sort(max_age=30, min_hits=3)
        elif self.tracking == "deep_sort":
            print_info(widget, False, "info", "Loading Deep Sort model ...",
                       -1)
            self.mot_tracking = DeepSort()
            print_info(widget, False, "info", "Deep Sort model loaded", -1)

    def start(self):
        # start a thread to read frames from the file video stream
        t = Thread(target=self.update, args=())
        # t.daemon = True
        t.start()
        return self

    def update(self):
        frames = 0
        start = time.time()
        print_info(self.widget, False, "info", "Began capturing", -2)
        # keep looping infinitely
        while True:
            # if the thread indicator variable is set, stop the
            # thread
            if self.stopped:
                break
            if self.canceled:
                current_time = time.time()
                print_info(self.widget, False, "info", "Canceled processing",
                           current_time - start)
                return
            if self.paused:
                self.widget.obj.pauseMutex.lock()
                self.widget.obj.pauseCond.wait(self.widget.obj.pauseMutex)
                self.widget.obj.pauseMutex.unlock()
                self.paused = False
            # otherwise, ensure the queue has room in it
            if not self.Q.full():
                # read the next frame from the file
                (grabbed, frame) = self.stream.read()
                # if the `grabbed` boolean is `False`, then we have
                # reached the end of the video file
                if not grabbed:
                    self.stop()
                    self.ready = True
                    return
                # add the frame to the queue
                self.Q.put(prep_image(frame, self.inp_dim))
                self.imread.put(frame)

                frames += 1
                current_time = time.time()
                msg = " FPS of the video is {:5.4f}".format(
                    frames / (current_time - start))
                print_info(self.widget, False, "info", msg,
                           current_time - start)

                if frames % self.batch_size == 0:
                    self.process_frames()
        if not self.Q.empty():
            self.process_frames()

    def read(self):
        # return next frame in the queue
        return self.Q.get()

    def more(self):
        # return True if there are still frames in the queue
        return self.Q.qsize() > 0

    def stop(self):
        # indicate that the thread should be stopped
        self.stopped = True

    def cancel(self):
        self.canceled = True

    def pause(self):
        self.paused = True

    def has_batch(self):
        if self.Q.qsize() >= self.batch_size:
            return True
        if self.Q.qsize() > 0 and self.stopped:
            return True
        return False

    def get_batch(self):
        if (self.Q.qsize() >= self.batch_size) or (self.Q.qsize() > 0
                                                   and self.stopped):
            res = np.empty((0, 0))
            im_dim_list = []
            imread_list = []
            for _ in range(self.batch_size):
                img = self.Q.get()
                if np.size(res, 0) == 0:
                    res = img
                else:
                    res = torch.cat((res, img))
                img = self.imread.get()
                im_dim_list.append((img.shape[1], img.shape[0]))
                imread_list.append(img)
            im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2)
            return res, im_dim_list, imread_list
        return False, False, False

    def process_frames(self):
        batch_nr = -1
        batch, im_dims, imread = self.get_batch()
        if imread:
            batch_nr += 1
            if self.cuda:
                im_dims = im_dims.cuda()
                batch = batch.cuda()
            with torch.no_grad():
                output = self.model(batch, self.cuda)

            for frame_id in range(np.size(output, 0)):
                nr_frame = self.batch_size * batch_nr + frame_id + 1
                im_dim = im_dims[frame_id]
                frame = output[frame_id].unsqueeze(0)
                frame = write_results(frame,
                                      self.confidence,
                                      self.num_classes,
                                      nms_conf=self.nms_thresh)

                if np.size(frame, 0) > 0:
                    im_dim = im_dim.repeat(frame.size(0), 1)
                    scaling_factor = torch.min(416 / im_dim, 1)[0].view(-1, 1)

                    frame[:, [1, 3]] -= (self.inp_dim - scaling_factor *
                                         im_dim[:, 0].view(-1, 1)) / 2
                    frame[:, [2, 4]] -= (self.inp_dim - scaling_factor *
                                         im_dim[:, 1].view(-1, 1)) / 2

                    frame[:, 1:5] /= scaling_factor

                    for i in range(frame.shape[0]):
                        frame[i, [1, 3]] = torch.clamp(frame[i, [1, 3]], 0.0,
                                                       im_dim[i, 0])
                        frame[i, [2, 4]] = torch.clamp(frame[i, [2, 4]], 0.0,
                                                       im_dim[i, 1])

                    if self.is_classifier:
                        frame = self.apply_classifier_model(
                            imread[frame_id], frame)

                if self.tracking == "sort":
                    if self.cuda:
                        frame = frame.cpu()
                    frame = self.mot_tracking.update(frame)
                    if self.cuda:
                        frame = torch.from_numpy(frame).cuda()
                elif self.tracking == "deep_sort":
                    if self.cuda:
                        frame = frame.cpu()
                    tracker, detections_class = self.mot_tracking.update(
                        imread[frame_id], frame)
                    frame = []
                    for track in tracker.tracks:
                        if not track.is_confirmed(
                        ) or track.time_since_update > 1:
                            continue

                        bbox = track.to_tlbr(
                        )  # Get the corrected/predicted bounding box
                        id_num = int(track.track_id
                                     )  # Get the ID for the particular track.

                        # Draw bbox from tracker.
                        frame.append(
                            np.concatenate(([id_num + 1], bbox, [
                                track.conf_score, track.class_score, track.cid
                            ])).reshape(1, -1))
                    if len(frame) > 0:
                        frame = np.concatenate(frame)
                        if self.cuda:
                            frame = torch.from_numpy(frame).cuda()
                    else:
                        frame = torch.empty((0, 8))

                if np.size(frame, 0) == 0:
                    image_handler = ImageHandler(nr_frame, batch_nr,
                                                 f"frame{nr_frame}",
                                                 imread[frame_id],
                                                 self.tracking)
                    self.Q_processed.put(image_handler)
                    continue

                image_handler = ImageHandler(nr_frame, batch_nr,
                                             f"frame{nr_frame}",
                                             imread[frame_id], self.tracking)
                if self.is_classifier:
                    image_handler.write(frame, self.classifier_classes)
                else:
                    image_handler.write(frame, self.classes)
                self.Q_processed.put(image_handler)

    def get_image(self):
        return self.Q_processed.get()

    def has_images(self):
        return not self.Q_processed.empty()

    def apply_classifier_model(self, imread, frame):
        # get crops from detections in frame
        crops = torch.empty((0, 0))
        detections = frame[:, 1:5]
        for d in detections:
            for i in range(len(d)):
                if d[i] < 0:
                    d[i] = 0
            img_h, img_w, img_ch = imread.shape
            xmin, ymin, xmax, ymax = d
            if xmin > img_w:
                xmin = img_w
            if ymin > img_h:
                ymin = img_h
            ymin = abs(int(ymin))
            ymax = abs(int(ymax))
            xmin = abs(int(xmin))
            xmax = abs(int(xmax))
            try:
                crop = imread[ymin:ymax, xmin:xmax, :]
                crop = prep_image(crop, self.classifier_inp_dim)
                if np.size(crops, 0) == 0:
                    crops = crop
                else:
                    crops = torch.cat((crops, crop))
            except:
                continue
        if self.cuda:
            crops = crops.cuda()
        with torch.no_grad():
            output = self.model_classifier(crops, self.cuda)
        for frame_id in range(np.size(output, 0)):
            new_det = output[frame_id].unsqueeze(0)
            new_det = write_results(new_det,
                                    self.classifier_confidence,
                                    self.classifier_num_classes,
                                    nms_conf=self.classifier_nms_thesh)
            if np.size(new_det, 0) > 0:
                index = torch.argmax(new_det[:, 6])
                frame[frame_id, 6:8] = new_det[index, 6:8]
            else:
                frame[frame_id, 6] = -1
        frame = frame[frame[:, 6] >= 0]
        return frame
예제 #8
0
def infer(payload):
    unlabeled = payload["unlabeled"]
    ckpt_file = payload["ckpt_file"]

    batch_size = 16

    coco = COCO("./data", Transforms(), samples=unlabeled, train=True)
    loader = DataLoader(coco,
                        shuffle=False,
                        batch_size=batch_size,
                        collate_fn=collate_fn)

    config_file = "yolov3.cfg"
    model = Darknet(config_file).to(device)
    ckpt = torch.load(os.path.join("./log", ckpt_file))
    model.load_state_dict(ckpt["model"])

    model.eval()

    # batch predictions from the entire test set
    predictions = []

    with torch.no_grad():
        for img, _, _ in loader:
            img = img.to(device)
            # get inference output
            output = model(img)

            # batch predictions from 3 yolo layers
            batched_prediction = []
            for p in output:  # (batch_size, 3, gx, gy, 85)
                batch_size = p.shape[0]
                p = p.view(batch_size, -1, 85)
                batched_prediction.append(p)

            batched_prediction = torch.cat(batched_prediction, dim=1)
        predictions.append(batched_prediction)
    predictions = torch.cat(predictions, dim=0)

    # apply nms to predicted bounding boxes
    predicted_boxes, predicted_objectness, predicted_class_dist = bbox_transform(
        predictions)

    # the predicted boxes are in log space relative to the anchor priors
    # bring them back to normalized xyxy format
    cxcy_priors = anchors.normalize("cxcy")

    # expand the priors to match the dimension of predicted_boxes
    batched_cxcy_priors = cxcy_priors.unsqueeze(0).repeat(
        predicted_boxes.shape[0], 1, 1)

    predicted_boxes = batched_gcxgcy_to_cxcy(predicted_boxes,
                                             batched_cxcy_priors)

    del batched_cxcy_priors

    # convert predicted_boxes to xyxy format and perform nms
    xyxy = batched_cxcy_to_xy(predicted_boxes)

    del predicted_boxes  # (no longer need cxcy format)

    # class distribution is part of the return
    # do notapply softmax to the predicted class distribution
    # as we will do it internally for efficiency
    outputs = {}
    for i in range(len(coco)):
        # get boxes, scores, and objects on each image
        _xyxy, _scores = xyxy[i], predicted_objectness[i]
        _pre_softmax = predicted_class_dist[i]

        keep = tv.ops.nms(_xyxy, _scores, 0.5)

        boxes, scores, pre_softmax = _xyxy[keep], _scores[keep], _pre_softmax[
            keep]

        outputs[i] = {
            "boxes": boxes.cpu().numpy().tolist(),
            "pre_softmax": pre_softmax.cpu().numpy().tolist(),
            "scores": scores.cpu().numpy().tolist(),
        }

    return {"outputs": outputs}
예제 #9
0
파일: loss.py 프로젝트: BrownSweater/YOLOV3
                    label_noobj_mask * FOCAL(input=p_conf, target=label_obj_mask)) * label_mix


        # loss classes
        loss_cls = label_obj_mask * BCE(input=p_cls, target=label_cls) * label_mix


        loss_giou = (torch.sum(loss_giou)) / batch_size
        loss_conf = (torch.sum(loss_conf)) / batch_size
        loss_cls = (torch.sum(loss_cls)) / batch_size
        loss = loss_giou + loss_conf + loss_cls

        return loss, loss_giou, loss_conf, loss_cls


if __name__ == "__main__":
    from model import Darknet
    net = Darknet("cfg/yolov3-voc.cfg")

    p, p_d = net(torch.rand(3, 3, 416, 416))
    label_sbbox = torch.rand(3,  52, 52, 3,26)
    label_mbbox = torch.rand(3,  26, 26, 3, 26)
    label_lbbox = torch.rand(3, 13, 13, 3,26)
    sbboxes = torch.rand(3, 150, 4)
    mbboxes = torch.rand(3, 150, 4)
    lbboxes = torch.rand(3, 150, 4)

    loss, loss_xywh, loss_conf, loss_cls = YoloV3Loss(pms.MODEL["ANCHORS"], pms.MODEL["STRIDES"])(p, p_d, label_sbbox,
                                    label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes)
    print(loss)
예제 #10
0
        "D:\py_pro\YOLOv3-PyTorch\weights\kalete\ep893-map80.55-loss0.00.weights",
        type=str)
    parser.add_argument("--evaluation_interval",
                        type=int,
                        default=2,
                        help="每隔几次使用验证集")
    args = parser.parse_args()
    print(args)

    class_names = load_classes(
        r"D:\py_pro\YOLOv3-PyTorch\data\kalete\dnf_classes.txt")  # 加载所有种类名称
    train_path = r'D:\py_pro\YOLOv3-PyTorch\data\kalete\train.txt'
    val_path = r'D:\py_pro\YOLOv3-PyTorch\data\kalete\val.txt'

    print("载入网络...")
    model = Darknet(args.cfg)

    pretrained = True
    if pretrained:
        model.load_state_dict(torch.load(args.weights))
    else:
        # 随机初始化权重,会对模型进行高斯随机初始化
        model.apply(weights_init_normal)
    print("网络权重加载成功.")

    # 设置网络输入图片尺寸大小与学习率
    reso = int(model.net_info["height"])
    lr = float(model.net_info["learning_rate"])

    assert reso % 32 == 0  # 判断如果不是32的整数倍就抛出异常
    assert reso > 32  # 判断如果网络输入图片尺寸小于32也抛出异常
예제 #11
0
def test(payload):
    ckpt_file = payload["ckpt_file"]

    batch_size = 16

    coco = COCO("./data", Transforms(), train=False)
    loader = DataLoader(coco,
                        shuffle=False,
                        batch_size=batch_size,
                        collate_fn=collate_fn)

    config_file = "yolov3.cfg"
    model = Darknet(config_file).to(device)

    ckpt = torch.load(os.path.join("./log", ckpt_file))
    model.load_state_dict(ckpt["model"])

    model.eval()

    # batch predictions from the entire test set
    predictions = []

    # keep track of ground-truth boxes and label
    labels = []
    with torch.no_grad():
        for img, boxes, class_labels in loader:
            img = img.to(device)
            # get inference output
            output = model(img)

            for b, c in zip(boxes, class_labels):
                labels.append((b, c))

            # batch predictions from 3 yolo layers
            batched_prediction = []
            for p in output:  # (bacth_size, 3, gx, gy, 85)
                p = p.view(p.shape[0], -1, 85)
                batched_prediction.append(p)

            batched_prediction = torch.cat(batched_prediction, dim=1)
            predictions.append(batched_prediction)

    predictions = torch.cat(predictions, dim=0)

    # apply nms to predicted bounding boxes
    predicted_boxes, predicted_objectness, predicted_class_dist = bbox_transform(
        predictions)

    # the predicted boxes are in log space relative to the anchor priors
    # bring them back to normalized xyxy format
    cxcy_priors = anchors.normalize("cxcy")

    # expand the priors to match the dimension of predicted_boxes
    batched_cxcy_priors = cxcy_priors.unsqueeze(0).repeat(
        predicted_boxes.shape[0], 1, 1)

    predicted_boxes = batched_gcxgcy_to_cxcy(predicted_boxes,
                                             batched_cxcy_priors)

    del batched_cxcy_priors
    # convert predicted_boxes to xyxy format and perform nms
    xyxy = batched_cxcy_to_xy(predicted_boxes)
    del predicted_boxes  # (no longer need cxcy format)

    # get predicted object
    # apply softmax to the predicted class distribution
    # note that bbox_tranform does not apply softmax
    # because the loss we are using requires us to use raw output
    predicted_objects = torch.argmax(F.softmax(predicted_class_dist, dim=-1),
                                     dim=-1)

    # predictions on the test set (value of "predictions" of the return)
    prd = {}
    for i in range(len(coco)):
        # get boxes, scores, and objects on each image
        _xyxy, _scores = xyxy[i], predicted_objectness[i]
        _objects = predicted_objects[i]

        keep = tv.ops.nms(_xyxy, _scores, 0.5)
        boxes, scores, objects = _xyxy[keep], _scores[keep], _objects[keep]

        prd[i] = {
            "boxes": boxes.cpu().numpy().tolist(),
            "objects": objects.cpu().numpy().tolist(),
            "scores": scores.cpu().numpy().tolist(),
        }

    # ground-truth of the test set
    # skip "difficulties" field, because every object in COCO
    # should be considered reasonable
    lbs = {}
    for i in range(len(coco)):
        boxes, class_labels = labels[i]

        lbs[i] = {
            "boxes": boxes.cpu().numpy().tolist(),
            "objects": class_labels
        }

    return {"predictions": prd, "labels": lbs}
예제 #12
0
    print(opt)

    #logger = Logger("logs")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    os.makedirs("output", exist_ok=True)
    os.makedirs("checkpoints", exist_ok=True)

    # Get data configuration
    data_config = parse_data_config(opt.data_config)
    train_path = data_config["train"]
    valid_path = data_config["valid"]
    class_names = load_classes(data_config["names"])

    # Initiate model
    model = Darknet(opt.model_def).to(device)
    model.apply(weights_init_normal)

    # If specified we start from checkpoint
    if opt.pretrained_weights:
        if opt.pretrained_weights.endswith(".pth"):
            model.load_state_dict(torch.load(opt.pretrained_weights))
        else:
            model.load_darknet_weights(opt.pretrained_weights)

    # Get dataloader
    dataset = ListDataset(train_path,
                          augment=True,
                          multiscale=opt.multiscale_training)
    dataloader = torch.utils.data.DataLoader(
        dataset,
예제 #13
0
def train(params):
    params = Params(params)

    set_random_seeds(params.seed)

    time_now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    params.save_root = params.save_root + f'/{params.project_name}_{time_now}_{params.version}'
    os.makedirs(params.save_root, exist_ok=True)

    logging.basicConfig(
        filename=
        f'{params.save_root}/{params.project_name}_{time_now}_{params.version}.log',
        filemode='a',
        format='%{asctime}s - %(levalname)s: %(message)s')

    if params.num_gpus == 0:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
    logging.info(f'Available GPUs: {torch.cuda.device_count()}')

    # Train pipeline
    files = glob.glob(
        os.path.join(params.data_root, params.project_name, params.train_set,
                     '*/*.JPEG'))
    labels = []
    for fp in files:
        label = int(fp.split('/')[-2]) - 1
        labels.append(label)
    assert len(files) == len(labels)
    train_pipeline = TrainImageDecoderPipeline(params=params,
                                               device_id=0,
                                               files=files,
                                               labels=labels)
    train_pipeline.build()
    train_pii = pytorchIterator(train_pipeline,
                                last_batch_policy=LastBatchPolicy.DROP,
                                reader_name='Reader',
                                auto_reset=True)
    # Evaluation pipeline
    files = glob.glob(
        os.path.join(params.data_root, params.project_name, params.val_set,
                     '*.JPEG'))
    files = sorted(files,
                   key=lambda f: f.split('/')[-1].split('_')[-1].split('.')[0])
    labels = loadlabel(
        os.path.join(
            params.data_root, params.project_name,
            'ILSVRC2012_devkit_t12/data/ILSVRC2012_validation_ground_truth.txt'
        ))
    eval_pipeline = EvalImageDecoderPipeline(params=params,
                                             device_id=0,
                                             files=files,
                                             labels=labels)
    eval_pipeline.build()
    eval_pii = pytorchIterator(eval_pipeline,
                               last_batch_policy=LastBatchPolicy.PARTIAL,
                               reader_name='Reader',
                               auto_reset=True)

    model = Darknet()

    last_step = 0
    last_epoch = 0
    if params.load_weights != 'None':
        try:
            state_dict = torch.load(params.load_weights)
            model.load_state_dict(state_dict)
            last_step = int(params.load_weights.split('_')[-1].split('.')[0])
            last_epoch = int(params.load_weights.split('_')[-2])
        except:
            logging.error('Fail to resuming from weight!')
            exit()

    if params.num_gpus > 0:
        model = model.cuda()
        if params.num_gpus > 1:
            model = nn.DataParallel(model)

    if params.optim == 'Adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=params.learning_rate)
    else:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=params.learning_rate,
                                    momentum=0.9,
                                    nesterov=True)

    criterion = nn.CrossEntropyLoss()
    # ls_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=0.5, verbose=True, patience=8)

    epoch = 0
    begin_epoch = max(0, last_epoch)
    step = max(0, last_step)
    best_loss = 100
    logging.info('Begin to train...')
    model.train()
    try:
        for epoch in range(begin_epoch, params.epoch):
            for iter, data in enumerate(train_pii):
                x = data[0]['data']
                label = data[0]['label'].squeeze(-1).long().cuda()
                output = model(x)
                loss = criterion(output, label)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                if iter % params.save_interval == 0:
                    logging.info(
                        f'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} '
                        f'Train Epoch: {epoch} iter: {iter} loss: {loss.item()}'
                    )
                step += 1
            if epoch % params.eval_interval == 0:
                model.eval()
                epoch_loss = 0
                prediciton = []
                target = []
                with torch.no_grad():
                    for iter, data in enumerate(eval_pii):
                        x = data[0]['data']
                        label = data[0]['label'].squeeze(-1).long().cuda()
                        output = model(x)
                        loss = criterion(output, label).item()
                        epoch_loss += loss * x.shape[0]
                        prediciton.append(output)
                        target.append(label)
                    loss = epoch_loss / 50000
                    prediciton = torch.cat(prediciton, dim=0)
                    target = torch.cat(target, dim=0)
                    acc = top1accuracy(prediciton, target)
                    acctop5 = top5accuracy(prediciton, target)
                    logging.info(
                        f'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} '
                        f'Eval Epoch: {epoch} loss: {loss} accuracy: {acc} Top5 acc: {acctop5}'
                    )
                    if loss < best_loss:
                        best_loss = loss
                        save_checkpoint(
                            model, f'{params.save_root}/{epoch}_{step}.pth')
                model.train()

    except KeyboardInterrupt:
        save_checkpoint(model,
                        f'{params.save_root}/Interrupt_{epoch}_{step}.pth')
예제 #14
0
    import os
    import sys

    weights = './pretrained.pt'
    imgsz = 448
    conf_thres = 0.35
    iou_thres = 0.5
    cfg = './cfg/yolov4-pacsp.cfg'
    names = ['fire', 'smoke']
    colors = [(255, 30, 0), (50, 0, 255)]
    device = torch.device('cpu')

    if not os.path.isfile(weights):
        # Download weight 200Mb
        # torch.hub.download_url_to_file('https://www.dropbox.com/s/a1puv47v6tmrk6j/weights.pt?dl=1', weights)
        pass

    # Load model
    model = Darknet(cfg, imgsz)
    # model.load_state_dict(weights)
    model.to(device).eval()

    source = sys.argv[1]

    out = detect(model, source, './out.png', imgsz, conf_thres, iou_thres,
                 names, colors, device)

    cv2.imshow('output', out)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    def __init__(self, path, args, with_tracking, widget, queue_size=3000):
        # initialize the file video stream along with the boolean
        # used to indicate if the thread should be stopped or not
        self.stream = cv2.VideoCapture(path)
        self.widget = widget
        self.tracking = with_tracking
        if not self.stream:
            if type(path) == int:
                print_info(widget, True, "error",
                           f"Error opening web cam on {path}")
            else:
                print_info(widget, True, "error",
                           f"Error opening video file {path}")
        self.stopped = False
        self.canceled = False
        self.paused = False
        self.ready = False
        # initialize the queue used to store frames read from
        # the video file
        self.Q = Queue(maxsize=queue_size)
        self.imread = Queue(maxsize=queue_size)
        self.Q_processed = Queue(maxsize=queue_size)

        self.inp_dim = int(args.reso)
        self.batch_size = int(args.bs)
        self.names_file = args.names
        self.confidence = float(args.confidence)
        self.nms_thresh = float(args.nms_thresh)
        self.is_classifier = args.is_classifier
        self.classes = load_classes(self.names_file)
        self.num_classes = len(self.classes)

        self.model = None
        self.model_classifier = None
        if self.is_classifier:
            print_info(widget, False, "info",
                       "Loading network for detection.....", -1)
            self.model = Darknet(args.classifier_cfg)
            self.model.load_weights(args.classifier_weights)
            print_info(widget, False, "info",
                       "Network for detection successfully loaded", 0)

            print_info(widget, False, "info",
                       "Loading network for classification.....", -1)
            self.model_classifier = Darknet(args.cfg)
            self.model_classifier.load_weights(args.weights)
            print_info(widget, False, "info",
                       "Network for classification successfully loaded", 0)

            self.model_classifier.net_info["height"] = args.reso
            self.inp_dim = int(self.model_classifier.net_info["height"])
            # If there's a GPU availible, put the model on GPU
            self.cuda = torch.cuda.is_available()
            if self.cuda:
                self.model_classifier.cuda()
            # Set the model in evaluation mode
            self.model_classifier.eval()

            self.classifier_confidence = self.confidence
            self.classifier_nms_thesh = self.nms_thresh
            self.classifier_classes = self.classes
            self.classifier_num_classes = self.num_classes
            self.classifier_names_file = self.names_file
            self.classifier_inp_dim = self.inp_dim

            self.inp_dim = args.classifier_inp_dim
            self.confidence = args.classifier_confidence
            self.nms_thresh = args.classifier_nms_thresh
            self.names_file = args.classifier_names
            self.classes = load_classes(self.names_file)
            self.num_classes = len(self.classes)

        else:
            print_info(widget, False, "info", "Loading network.....", -1)
            self.model = Darknet(args.cfg)
            self.model.load_weights(args.weights)
            print_info(widget, False, "info", "Network successfully loaded", 0)

        self.model.net_info["height"] = self.inp_dim
        assert self.inp_dim % 32 == 0
        assert self.inp_dim > 32

        # If there's a GPU availible, put the model on GPU
        self.cuda = torch.cuda.is_available()
        if self.cuda:
            self.model.cuda()
        # Set the model in evaluation mode
        self.model.eval()

        # if tracking selected, initialize sort class
        self.mot_tracking = None
        if self.tracking == "sort":
            self.mot_tracking = Sort(max_age=30, min_hits=3)
        elif self.tracking == "deep_sort":
            print_info(widget, False, "info", "Loading Deep Sort model ...",
                       -1)
            self.mot_tracking = DeepSort()
            print_info(widget, False, "info", "Deep Sort model loaded", -1)
            continue
        #org_weights_mess.append([var_name, var_shape])
        #print(var_name,var_shape)
        #print("=> " + str(var_name).ljust(50), var_shape)
print()
tf.reset_default_graph()

cur_weights_mess = []
tf.Graph().as_default()
with tf.name_scope('input'):
    input_data = tf.placeholder(dtype=tf.float32,
                                shape=(1, 416, 416, 3),
                                name='input_data')
    #meta_weight=tf.placeholder(dtype=tf.float32,shape=(1,1,20*1024,1),name='meta_weight')
    #training = tf.placeholder(dtype=tf.bool, name='trainable')
model = Darknet(input_data, False)
for var in tf.global_variables():
    var_name = var.op.name
    var_name_mess = str(var_name).split('/')
    var_shape = var.shape
    #print(var_name_mess[0])
    #if flag.train_from_coco:
    #if 'dyconv' in var_name_mess and 'weights' in var_name_mess:
    #    cur_weights_mess.append([var_name,])
    if (var_name_mess[-1] not in [
            'weights', 'gamma', 'beta', 'moving_mean', 'moving_variance'
    ]) or 'pred' in var_name_mess or 'decode' in var_name_mess:
        print("===========", var_shape)
        continue
    #cur_weights_mess.append([var_name, var_shape])
    #print("=> " + str(var_name).ljust(50), var_shape)
예제 #17
0
import os
import cv2
import torch
import numpy as np
from torch.autograd import Variable

from model import Darknet


def get_test_img():
    img = cv2.imread('dog-cycle-car.png')
    img = cv2.resize(img, (416, 416))
    img = img[:, :, ::-1].transpose((2, 0, 1))
    img = img[np.newaxis, :, :, :] / 255.
    img = torch.from_numpy(img).float()
    img = Variable(img)
    return img


model = Darknet('config/yolov3.cfg')
img = get_test_img()
out = model(img)
print(out)
print(f'Shape:=> First YOLO:{out[0].shape} Sencond YOLO:{out[0].shape}')
예제 #18
0
def main():
    # Hyperparameters parser
    parser = argparse.ArgumentParser()
    parser.add_argument("--year", type=str, default='2012', help="used to select training set")
    parser.add_argument("--set", type=str, default='train', help="used to select training set")
    parser.add_argument("--epochs", type=int, default=201, help="number of epochs")
    parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch")
    parser.add_argument("--model_def", type=str, default="config/net/resnet_dropout.cfg", help="path to model definition file")
    # parser.add_argument("--model_def", type=str, default="config/net/dqnyolo_large.cfg", help="path to model definition file")
    # parser.add_argument("--model_def", type=str, default="config/net/dqnyolo_mini.cfg", help="path to model definition file")
    # parser.add_argument("--model_def", type=str, default="config/net/dqnyolo_tiny.cfg", help="path to model definition file")
    parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
    parser.add_argument("--opt_lr", type=float, default=1e-5, help="learning rate for optimizer")
    parser.add_argument("--use_gpu", default=True, help="use GPU to accelerate training")
    parser.add_argument("--shuffle_train", default=True, help="shuffle the training dataset")
    parser.add_argument("--checkpoint_interval", type=int, default=20, help="interval between saving model weights")
    parser.add_argument("--evaluation_interval", type=int, default=10, help="interval evaluations on validation set")
    # parser.add_argument("--pretrained_weights", type=str, default="data/backbone/darknet53.conv.74", help="if specified starts from checkpoint model")
    # parser.add_argument("--pretrained_weights", type=str, default="logs/model/model_params_200.ckpt", help="if specified starts from checkpoint model")
    parser.add_argument("--pretrained_weights", default=False, help="if specified starts from checkpoint model")
    opt = parser.parse_args()
    print(opt)

    if opt.use_gpu is True:
        if torch.cuda.is_available():
            device = torch.device('cuda')
        else:
            raise RuntimeError("Current Torch doesn't have GPU support.")
    else:
        device = torch.device('cpu')

    logger = SummaryWriter(exist_or_create_folder("./logs/tb/"))

    # Initiate model
    eval_model = Darknet(opt.model_def).to(device)
    if opt.pretrained_weights:
        print("Initialize model with pretrained_model")
        if opt.pretrained_weights.endswith(".ckpt"):
            eval_model.load_state_dict(torch.load(opt.pretrained_weights))
        else:
            eval_model.load_darknet_weights(opt.pretrained_weights)
    else:
        print("Initialize model randomly")
        eval_model.apply(weights_init_normal)
    # eval_model.load_state_dict(torch.load("./logs/saved_exp/master-v2/model_params_80.ckpt"))
    print(eval_model)
    summary(eval_model, (3, 416, 416))

    learn_batch_counter = 0  # for logger update (total numbers)
    batch_size = opt.batch_size

    # Get dataloader
    print("Begin loading train dataset ......")
    t_load_data = time.time()
    dataset = torchvision.datasets.VOCDetection(root='data/VOC/',
                                                year=opt.year,
                                                image_set=opt.set,
                                                transforms=None,
                                                download=True)
    dataset_dict = trans_voc(dataset)
    dataset = ListDataset(dataset_dict)
    loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=opt.batch_size,
        shuffle=opt.shuffle_train,
        pin_memory=True,
        collate_fn=dataset.collate_fn,
    )
    print("Complete loading train dataset in {} s".format(time.time() - t_load_data))

    optimizer = torch.optim.Adam(eval_model.parameters(), lr=opt.opt_lr)
    # Warmup and learning rate decay
    scheduler_cosine = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.epochs)
    # 5 epoch warmup, lr from 1e-5 to 1e-4, after that schedule as after_scheduler
    scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=10, total_epoch=10,
                                              after_scheduler=scheduler_cosine)

    start_time = time.time()

    for i_epoch in range(opt.epochs):
        eval_model.train()

        for i_batch, (_, imgs, raw_targets, transform_params, tar_boxes) in enumerate(loader):
            print("\n++++++++++ i_epoch-i_batch {}-{} ++++++++++".format(i_epoch, i_batch))
            batch_step_counter = 0

            if len(imgs) != batch_size:
                print("Current batch size is smaller than opt.batch_size!")
                continue

            imgs = imgs.to(device)
            raw_targets = raw_targets.to(device)
            tar_boxes = tar_boxes.to(device)

            input_img = imgs

            if i_epoch == 0 and i_batch == 0:
                logger.add_graph(eval_model, input_img)

            # print(raw_targets)
            # print(raw_targets.size())
            # print(raw_targets[:, :, :, 6:].size())
            # print(raw_targets[:, :, :, 0].unsqueeze(3).size())
            cls_targets = torch.cat((raw_targets[:, :, :, 0].unsqueeze(3), raw_targets[:, :, :, 6:]), 3)
            # print(cls_targets.size())

            loss, pred = eval_model(input_img, cls_targets)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            batch_step_counter += 1
            learn_batch_counter += 1

            print("Ep-bt: {}-{} | Loss: {}".format(i_epoch, i_batch, loss.item()))
            logger.add_scalar('loss/loss', loss.item(), learn_batch_counter)

        if (i_epoch + 1) % opt.checkpoint_interval == 0:
            print("Saving model in epoch {}".format(i_epoch))
            torch.save(eval_model.state_dict(),
                       exist_or_create_folder("./logs/model/model_params_{}.ckpt".format(i_epoch)))

        # Evaluate the model on the validation set
        if (i_epoch + 1) % opt.evaluation_interval == 0:
            precision, recall, AP, f1, ap_class = evaluate(
                eval_model,
                [opt.year, 'val'],
                [0.5, 0.5, 0.5],
                batch_size,
                True,
                diagnosis_code=1
            )
            evaluation_metrics = [
                ("val_precision", precision.mean()),
                ("val_recall", recall.mean()),
                ("val_mAP", AP.mean()),
                ("val_f1", f1.mean()),
            ]
            for tag, value in evaluation_metrics:
                logger.add_scalar("val/{}".format(tag), value.item(), i_epoch)

            # Print class APs and mAP
            ap_table = [["Index", "Class name", "AP"]]
            for i, c in enumerate(ap_class):
                ap_table += [[c, val2labels(c), "%.5f" % AP[i]]]
            print(AsciiTable(ap_table).table)
            print(f"---- validation mAP {AP.mean()}")

        # Evaluate the model on the training set
        if (i_epoch + 1) % opt.evaluation_interval == 0:
            precision, recall, AP, f1, ap_class = evaluate(
                eval_model,
                [opt.year, 'train'],
                [0.5, 0.5, 0.5],
                batch_size,
                True,
                diagnosis_code=1
            )
            evaluation_metrics = [
                ("train_precision", precision.mean()),
                ("train_recall", recall.mean()),
                ("train_mAP", AP.mean()),
                ("train_f1", f1.mean()),
            ]
            for tag, value in evaluation_metrics:
                logger.add_scalar("train/{}".format(tag), value.item(), i_epoch)

            # Print class APs and mAP
            ap_table = [["Index", "Class name", "AP"]]
            for i, c in enumerate(ap_class):
                ap_table += [[c, val2labels(c), "%.5f" % AP[i]]]
            print(AsciiTable(ap_table).table)
            print(f"---- training mAP {AP.mean()}")

        # Warmup and lr decay
        scheduler_warmup.step()

        # Free GPU memory
        torch.cuda.empty_cache()

    total_train_time = time.time() - start_time
    print("Training complete in {} hours".format(total_train_time / 3600))
예제 #19
0
파일: debug.py 프로젝트: gddcx/yolov1
def train(params):
    params = Params(params)

    set_random_seeds(params.seed)

    time_now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    params.save_root = params.save_root + f'/{params.project_name}_{time_now}_{params.version}'
    os.makedirs(params.save_root, exist_ok=True)

    logging.basicConfig(
        filename=
        f'{params.save_root}/{params.project_name}_{time_now}_{params.version}.log',
        filemode='a',
        format='%{asctime}s - %(levalname)s: %(message)s')

    if params.num_gpus == 0:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
    logging.info(f'Available GPUs: {torch.cuda.device_count()}')

    data_transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=params.mean, std=params.std)
    ])

    train_set = TrainDataset(root=os.path.join(params.data_root,
                                               params.project_name,
                                               params.train_set),
                             transform=data_transform)
    # val_set = EvalDataset(root=os.path.join(params.data_root, params.project_name, params.val_set),
    #                       label_path=os.path.join(params.data_root, params.project_name,
    #                                               'ILSVRC2012_devkit_t12/data/ILSVRC2012_validation_ground_truth.txt'),
    #                       transform=data_transform)
    train_params = {
        'batch_size': params.batch_size,
        'shuffle': False,
        'num_workers': 4,
        'drop_last': True
    }
    # val_params = {'batch_size': params.batch_size, 'shuffle': False, 'num_workers': params.num_gpus * 4,
    #               'drop_last': False}
    train_loader = DataLoader(train_set, **train_params)
    # val_loader = DataLoader(val_set, **val_params)

    eli = ExternalInputIterator(params.batch_size)
    params.mean = torch.Tensor(params.mean).unsqueeze(0).unsqueeze(0)
    params.std = torch.Tensor(params.std).unsqueeze(0).unsqueeze(0)
    pipe = ExternalSourcePipeline(params=params,
                                  num_threads=4,
                                  device_id=0,
                                  external_date=eli,
                                  seed=params.seed)
    # pipe.build()
    # images, _ = pipe.run()
    # print(np.array(images[0].as_cpu()).shape)
    import matplotlib.pyplot as plt
    # plt.imsave('image[0].jpg', np.array(images[0].as_cpu()).transpose((1, 2, 0)))
    # plt.imsave('image[0].jpg', images[0].as_cpu())
    # exit()

    pii = pytorchIterator(pipe,
                          last_batch_padded=True,
                          last_batch_policy=LastBatchPolicy.DROP)

    model = Darknet()
    criterion = nn.CrossEntropyLoss()

    last_step = 0
    last_epoch = 0
    if params.load_weights != 'None':
        try:
            state_dict = torch.load(params.load_weights)
            model.load_state_dict(state_dict)
            last_step = int(params.load_weights.split('_')[-1].split('.')[0])
            last_epoch = int(params.load_weights.split('_')[-2])
        except:
            logging.error('Fail to resuming from weight!')
            exit()

    if params.num_gpus > 0:
        model = model.cuda()
        if params.num_gpus > 1:
            model = nn.DataParallel(model)

    if params.optim == 'Adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=params.learning_rate)
    else:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=params.learning_rate,
                                    momentum=0.9,
                                    nesterov=True)

    epoch = 0
    begin_epoch = max(0, last_epoch)
    step = max(0, last_step)
    logging.info('Begin to train...')
    model.train()
    try:
        import time
        for epoch in range(begin_epoch, params.epoch):
            for iter, (data_pii,
                       data_torch) in enumerate(zip(pii, train_loader)):
                t = time.time()
                # type(x)显示torch.Tensor,但是x已经在显存上
                x_pii = data_pii[0]['data']
                label_pii = data_pii[0]['label'].cuda()
                x_torch = data_torch[0].cuda()
                label_torch = data_torch[1].cuda()
                x_pii = x_pii.cpu().squeeze(0).numpy().transpose((1, 2, 0))
                x_torch = x_torch.cpu().squeeze(0).numpy().transpose((1, 2, 0))
                import matplotlib.pyplot as plt
                plt.imsave('x_pii.jpg', x_pii)
                plt.imsave('x_torch.jpg', x_torch)
                exit()
                # print('load data time:', time.time() - t)
                # t = time.time()
                # output = model(x)
                # loss = criterion(output, label)
                # optimizer.zero_grad()
                # loss.backward()
                # optimizer.step()
                # print('running time:', time.time() - t)
                # if iter == 6:
                #     exit()

    except KeyboardInterrupt:
        save_checkpoint(model,
                        f'{params.save_root}/Interrupt_{epoch}_{step}.pth')
예제 #20
0
def main(train_path="../data/train/images/",
         val_path="../data/train/images/",
         labels_path="../data/train/yolo_labels/",
         weights_path="../checkpoints/",
         preload_weights_file="darknet53.conv.74",
         output_path="../output",
         yolo_config_file="../config/yolov3-kitti.cfg",
         fraction=1,
         learning_rate=1e-3,
         weight_decay=1e-4,
         batch_size=2,
         epochs=30,
         freeze_struct=[True, 5]):
    """
        This is the point of entry to the neural network program.
        All the training history will be saved as a csv in the output path
        
        Args
            train_path (string): Directory containing the training images
            val_path (string):: Directory containing the val images
            labels_path (string):: Directory containing the yolo format labels for data
            weights_path (string):: Directory containing the weights (new weights for this program will also be added here)
            preload_weights_file (string): Name of preload weights file
            output_path (string): Directory to store the training history outputs as csv
            yolo_config_file (string): file path of yolo configuration file
            fraction (float): fraction of data to use for training
            learning_rate (float): initial learning rate
            weight_decay (float): weight decay value
            batch_size (int): batch_size for both training and validation
            epochs (int): maximum number of epochs to train the model
            freeze_struct (list): [bool, int] indicating whether to freeze the Darknet backbone and until which epoch should it be frozen
            
        Returns
            None
    
    """

    # Set up checkpoints path
    checkpoints_path = weights_path

    # Set up env variables and create required directories
    os.makedirs(output_path, exist_ok=True)
    os.makedirs(checkpoints_path, exist_ok=True)

    # Set up cuda
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    print("Available device = ", device)

    # Create model and load pretrained darknet weights
    model = Darknet(yolo_config_file)
    print("Loading imagenet weights to darknet")
    model.load_weights(os.path.join(weights_path, preload_weights_file))
    model.to(device)
    #print(model)

    # Create datasets
    train_dataset = KITTI2D(train_path,
                            labels_path,
                            fraction=fraction,
                            train=True)
    valid_dataset = KITTI2D(val_path,
                            labels_path,
                            fraction=fraction,
                            train=False)

    # Create dataloaders
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)
    valid_dataloader = DataLoader(valid_dataset,
                                  batch_size=batch_size,
                                  shuffle=False)

    # Create optimizers
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                        model.parameters()),
                                 lr=learning_rate,
                                 weight_decay=weight_decay)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)

    # Create log csv files
    train_log_file = open(os.path.join(output_path, "train_results.csv"),
                          "w",
                          newline="")
    valid_log_file = open(os.path.join(output_path, "valid_results.csv"),
                          "w",
                          newline="")
    train_csv = csv.writer(train_log_file)
    valid_csv = csv.writer(valid_log_file)

    print("Starting to train yolov3 model...")

    # Train model here
    train_model(model,
                device,
                optimizer,
                lr_scheduler,
                train_dataloader,
                valid_dataloader,
                train_csv,
                valid_csv,
                weights_path,
                max_epochs=epochs,
                tensor_type=torch.cuda.FloatTensor,
                update_gradient_samples=1,
                freeze_darknet=freeze_struct[0],
                freeze_epoch=freeze_struct[1])

    # Close the log files
    train_log_file.close()
    valid_log_file.close()

    print("Training completed")
예제 #21
0
def detect(kitti_weights='../checkpoints/best_weights_kitti.pth', config_path='../config/yolov3-kitti.cfg',
           class_path='../data/names.txt'):
    """
        Script to run inference on sample images. It will store all the inference results in /output directory (
        relative to repo root)
        
        Args
            kitti_weights: Path of weights
            config_path: Yolo configuration file path
            class_path: Path of class names txt file
            
    """
    cuda = torch.cuda.is_available()
    os.makedirs('../output', exist_ok=True)

    # Set up model
    model = Darknet(config_path, img_size=416)
    model.load_weights(kitti_weights)

    if cuda:
        model.cuda()
        print("Cuda available for inference")

    model.eval()  # Set in evaluation mode

    dataloader = DataLoader(ImageFolder("../data/samples/", img_size=416),
                            batch_size=2, shuffle=False, num_workers=0)

    classes = load_classes(class_path)  # Extracts class labels from file

    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

    imgs = []  # Stores image paths
    img_detections = []  # Stores detections for each image index

    print('data size : %d' % len(dataloader))
    print('\nPerforming object detection:')
    prev_time = time.time()
    for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
        # Configure input
        input_imgs = Variable(input_imgs.type(Tensor))

        # Get detections
        with torch.no_grad():
            detections = model(input_imgs)
            detections = non_max_suppression(detections, 80, 0.8, 0.4)
            # print(detections)

        # Log progress
        current_time = time.time()
        inference_time = datetime.timedelta(seconds=current_time - prev_time)
        prev_time = current_time
        print('\t+ Batch %d, Inference Time: %s' % (batch_i, inference_time))

        # Save image and detections
        imgs.extend(img_paths)
        img_detections.extend(detections)

    # Bounding-box colors
    # cmap = plt.get_cmap('tab20b')
    cmap = plt.get_cmap('tab10')
    colors = [cmap(i) for i in np.linspace(0, 1, 20)]

    print('\nSaving images:')
    # Iterate through images and save plot of detections
    for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):

        print("(%d) Image: '%s'" % (img_i, path))

        # Create plot
        img = np.array(Image.open(path))
        plt.figure()
        fig, ax = plt.subplots(1)
        ax.imshow(img)

        kitti_img_size = 416

        # The amount of padding that was added
        pad_x = max(img.shape[0] - img.shape[1], 0) * (kitti_img_size / max(img.shape))
        pad_y = max(img.shape[1] - img.shape[0], 0) * (kitti_img_size / max(img.shape))
        # Image height and width after padding is removed
        unpad_h = kitti_img_size - pad_y
        unpad_w = kitti_img_size - pad_x

        # Draw bounding boxes and labels of detections
        if detections is not None:
            print(type(detections))
            print(detections.size())
            unique_labels = detections[:, -1].cpu().unique()
            n_cls_preds = len(unique_labels)
            bbox_colors = random.sample(colors, n_cls_preds)
            for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:

                print('\t+ Label: %s, Conf: %.5f' % (classes[int(cls_pred)], cls_conf.item()))
                # Rescale coordinates to original dimensions
                box_h = int(((y2 - y1) / unpad_h) * (img.shape[0]))
                box_w = int(((x2 - x1) / unpad_w) * (img.shape[1]))
                y1 = int(((y1 - pad_y // 2) / unpad_h) * (img.shape[0]))
                x1 = int(((x1 - pad_x // 2) / unpad_w) * (img.shape[1]))

                color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
                # Create a Rectangle patch
                bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2,
                                         edgecolor=color,
                                         facecolor='none')
                # Add the bbox to the plot
                ax.add_patch(bbox)
                # Add label
                plt.text(x1, y1 - 30, s=classes[int(cls_pred)] + ' ' + str('%.4f' % cls_conf.item()), color='white',
                         verticalalignment='top',
                         bbox={'color': color, 'pad': 0})

        # Save generated image with detections
        plt.axis('off')
        plt.gca().xaxis.set_major_locator(NullLocator())
        plt.gca().yaxis.set_major_locator(NullLocator())
        plt.savefig('../output/%d.png' % (img_i), bbox_inches='tight', pad_inches=0.0)
        plt.close()
예제 #22
0
    map(pre_img, loaded_imgs, [height for i in range(len(loaded_imgs))]))

left_over = 0
if (len(loaded_imgs) % batch_size):
    left_over = 1

num_batches = (len(loaded_imgs) // batch_size) + left_over

batches = [
    det_imgs[i * batch_size:min((i + 1) * batch_size, len(loaded_imgs))]
    for i in range(num_batches)
]

batches = [torch.cat(batch, 0) for batch in batches]

net = Darknet()
net = net.cuda()
net.load_weights()
net.eval()

write = 0


def put_rectangle(x, results):
    c1 = tuple(x[1:3].int())
    c2 = tuple(x[3:5].int())
    img = results[int(x[0])]
    cls = int(x[-1])
    label = "{0}".format(classes[cls])
    cv2.rectangle(img, c1, c2, [255, 0, 0], 1)
    t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
예제 #23
0
                        help="the image to predict (default: %(default)s)")

    parser.add_argument("--weight", required=True, metavar="/path/to/yolov4.weights", help="the path of weight file")

    parser.add_argument("--save-img", metavar="predicted-img", help="the path to save predicted image")

    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = parse_args()

    img: Image.Image = Image.open(args.img_file)
    img = img.resize((608, 608))

    # C*H*W
    img_data = to_image(img)

    net = Darknet(img_data.size(0))
    net.load_weights(args.weight)
    net.eval()

    with torch.no_grad():
        boxes, confs = net(img_data.unsqueeze(0))

        idxes_pred, boxes_pred, probs_pred = utils.post_processing(boxes, confs, 0.4, 0.6)

    utils.plot_box(boxes_pred, args.img_file, args.save_img)
예제 #24
0
def train(payload):

    labeled = payload["labeled"]
    resume_from = payload["resume_from"]
    ckpt_file = payload["ckpt_file"]

    # hyperparameters
    batch_size = 16
    epochs = 2  # just for demo
    lr = 1e-2
    weight_decay = 1e-2

    coco = COCO("./data", Transforms(), samples=labeled, train=True)
    loader = DataLoader(coco,
                        shuffle=True,
                        batch_size=batch_size,
                        collate_fn=collate_fn)

    config_file = "yolov3.cfg"
    model = Darknet(config_file).to(device)
    optimizer = optim.Adam(model.parameters(),
                           lr=lr,
                           weight_decay=weight_decay)

    # resume model and optimizer from previous loop
    if resume_from is not None:
        ckpt = torch.load(os.path.join("./log", resume_from))
        model.load_state_dict(ckpt["model"])
        optimizer.load_state_dict(ckpt["optimizer"])

    # loss function
    priors = anchors.normalize("xyxy")
    loss_fn = HardNegativeMultiBoxesLoss(priors, device=device)

    model.train()
    for img, boxes, labels in loader:
        img = img.to(device)

        # 3 predictions from 3 yolo layers
        output = model(img)

        # batch predictions on each image
        batched_prediction = []
        for p in output:  # (batch_size, 3, gx, gy, 85)
            batch_size = p.shape[0]
            p = p.view(batch_size, -1, 85)

            batched_prediction.append(p)

        batched_prediction = torch.cat(batched_prediction, dim=1)
        # (batch_size, n_priors, 85)

        # the last dim of batched_prediction represent the predicted box
        # batched_prediction[...,:4] is the coordinate of the predicted bbox
        # batched_prediction[...,4] is the objectness score
        # batched_prediction[...,5:] is the pre-softmax class distribution

        # we need to apply some transforms to the those predictions
        # before we can use HardNegativeMultiBoxesLoss
        # In particular, the predicted bbox need to be relative to
        # normalized anchor priors
        # we will define another function bbox_transform
        # to do those transform, since it will be used by other processes
        # as well.
        # see documentation on HardNegativeMultiBoxesLoss
        # on its input parameters

        predicted_boxes, predicted_objectness, predicted_class_dist = bbox_transform(
            batched_prediction)

        loss = loss_fn(predicted_boxes, predicted_objectness,
                       predicted_class_dist, boxes, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # save ckpt for this loop
    ckpt = {"model": model.state_dict(), "optimizer": optimizer.state_dict()}

    torch.save(ckpt, os.path.join("./log", ckpt_file))
    return
예제 #25
0
def detect_images(widget=None):
    if not widget:
        args = arg_parse()
    else:
        args = widget.args

    read_dir = time.time()
    print_info(widget, False, "info", "Reading addresses.....")
    images = args.images
    im_list = []
    img = None
    try:
        for img in images:
            if os.path.isabs(img):
                im_list.append(img)
            else:
                im_list.append(osp.join(osp.realpath('.'), img))
    except FileNotFoundError:
        print_info(widget, True, "error", "No file or directory with the name {}".format(img))

    if not os.path.exists(args.det):
        os.makedirs(args.det)
    print_info(widget, False, "info", "Finished reading addresses")
    finish_read_dir = time.time()

    batch_size = int(args.bs)
    confidence = float(args.confidence)
    nms_thesh = float(args.nms_thresh)
    namesfile = args.names

    cuda_present = torch.cuda.is_available()

    classes = load_classes(namesfile)
    num_classes = len(classes)

    # Set up the neural network
    load_net = time.time()
    print_info(widget, False, "info", "Loading network.....")
    model = Darknet(args.cfg)
    model.load_weights(args.weights)
    print_info(widget, False, "info", "Network successfully loaded")
    finish_load_net = time.time()

    model.net_info["height"] = args.reso
    model.net_info["width"] = args.reso
    inp_dim = int(model.net_info["height"])
    assert inp_dim % 32 == 0
    assert inp_dim > 32

    # If there's a GPU availible, put the model on GPU
    if cuda_present:
        model.cuda()
    # Set the model in evaluation mode (for Batchnorm layers)
    model.eval()
    # Detection phase

    load_batch = time.time()
    print_info(widget, False, "info", "Loading batches.....")
    loaded_ims = [cv2.imread(x) for x in im_list]

    im_batches = list(map(prep_image, loaded_ims, [inp_dim for _ in range(len(im_list))]))
    im_dim_list = [(x.shape[1], x.shape[0]) for x in loaded_ims]
    im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2)

    leftover = 0
    if len(im_dim_list) % batch_size:
        leftover = 1

    if batch_size != 1:
        num_batches = len(im_list) // batch_size + leftover
        im_batches = [torch.cat((im_batches[i * batch_size: min((i + 1) * batch_size,
                                                                len(im_batches))])) for i in range(num_batches)]

    if cuda_present:
        im_dim_list = im_dim_list.cuda()

    output = torch.empty((0, 0))

    print_info(widget, False, "info", "Finished loading batches....")
    start_det_loop = time.time()
    for i, batch in enumerate(im_batches):
        # load the image
        start = time.time()
        print_info(widget, False, "info", f"Detecting batch no {i}....")
        if cuda_present:
            batch = batch.cuda()
        with torch.no_grad():
            prediction = model(batch, cuda_present)

        prediction = write_results(prediction, confidence, num_classes, nms_conf=nms_thesh)

        end = time.time()

        if type(prediction) == int:

            for im_num, image in enumerate(im_list[i * batch_size: min((i + 1) * batch_size, len(im_list))]):
                im_id = i * batch_size + im_num
                msg = "{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start) / batch_size)
                msg += "\n{0:20s} {1:s}".format("Objects Detected:", "")
                msg += "\n----------------------------------------------------------"
                print_info(widget, False, 'batch_info', msg, im_id)
            continue

        prediction[:, 0] += i * batch_size  # transform the atribute from index in batch to index in imlist

        if np.size(output, 0) == 0:  # If we have't initialised output
            output = prediction
        else:
            output = torch.cat((output, prediction))

        for im_num, image in enumerate(im_list[i * batch_size: min((i + 1) * batch_size, len(im_list))]):
            im_id = i * batch_size + im_num
            objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
            msg = "{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start) / batch_size)
            msg += "\n{0:20s} {1:s}".format("Objects Detected:", " ".join(objs))
            msg += "\n----------------------------------------------------------"
            print_info(widget, False, 'batch_info', msg, im_id)

        if cuda_present:
            torch.cuda.synchronize()
        print_info(widget, False, "info", f"Finished detecting batch no {i}")

    if np.size(output, 0) == 0:
        print_info(widget, False, 'no_detections', "No detections were made")
        print_info(widget, False, 'finished')
        return

    # Start rescaling
    print_info(widget, False, "info", "Output processing....")
    output_rescale = time.time()
    im_dim_list = torch.index_select(im_dim_list, 0, output[:, 0].long())

    scaling_factor = torch.min(inp_dim / im_dim_list, 1)[0].view(-1, 1)

    output[:, [1, 3]] -= (inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
    output[:, [2, 4]] -= (inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2

    output[:, 1:5] /= scaling_factor

    # set padding space black
    for i in range(output.shape[0]):
        output[i, [1, 3]] = torch.clamp(output[i, [1, 3]], 0.0, im_dim_list[i, 0])
        output[i, [2, 4]] = torch.clamp(output[i, [2, 4]], 0.0, im_dim_list[i, 1])
    class_load = time.time()
    print_info(widget, False, "info", "Finished output processing.")

    # Start draw
    print_info(widget, False, "info", "Drawing boxes....")
    draw = time.time()
    images_handler = ImagesHandler(classes, output, loaded_ims, args.det, im_list, batch_size)
    images_handler.write()
    print_info(widget, False, "images_ready", images_handler.imageList)
    end = time.time()
    print_info(widget, False, "info", "Finished drawing boxes")

    msg = "\n\nSUMMARY"
    msg += "\n----------------------------------------------------------"
    msg += "\n{:25s}: {}".format("Task", "Time Taken (in seconds)")
    msg += "\n"
    msg += "\n{:25s}: {:2.3f}".format("Reading addresses", finish_read_dir - read_dir)
    msg += "\n{:25s}: {:2.3f}".format("Loading network", finish_load_net - load_net)
    msg += "\n{:25s}: {:2.3f}".format("Loading batch", start_det_loop - load_batch)
    msg += "\n{:25s}: {:2.3f}".format("Detection (" + str(len(im_list)) + " images)", output_rescale - start_det_loop)
    msg += "\n{:25s}: {:2.3f}".format("Output Processing", class_load - output_rescale)
    msg += "\n{:25s}: {:2.3f}".format("Drawing Boxes", end - draw)
    msg += "\n{:25s}: {:2.3f}".format("Average time_per_img", (end - load_batch) / len(im_list))
    msg += "\n----------------------------------------------------------"
    print_info(widget, False, 'info', msg)
    torch.cuda.empty_cache()

    print_info(widget, False, 'finished')
예제 #26
0
        help="number of cpu threads to use during batch generation")
    parser.add_argument("--img_size",
                        type=int,
                        default=416,
                        help="size of each image dimension")
    opt = parser.parse_args()
    print(opt)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    data_config = parse_data_config(opt.data_config)
    valid_path = data_config["valid"]
    class_names = load_classes(data_config["names"])

    # Initiate model
    model = Darknet(opt.model_def).to(device)
    if opt.weights_path.endswith(".weights"):
        # Load darknet weights
        model.load_darknet_weights(opt.weights_path)
    else:
        # Load checkpoint weights
        model.load_state_dict(torch.load(opt.weights_path))

    print("Compute mAP...")

    precision, recall, AP, f1, ap_class = evaluate(
        model,
        path=valid_path,
        iou_thres=opt.iou_thres,
        conf_thres=opt.conf_thres,
        nms_thres=opt.nms_thres,