num_workers=4) val_dataset = DatasetKITTIVal(kitti_depth_path=kitti_depth_path) val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=val_batch_size, shuffle=False, num_workers=1) criterion = MaskedL2Gauss().cuda() rmse_criterion = RMSE().cuda() model = DepthCompletionNet().cuda() model = torch.nn.DataParallel(model) model.train() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) optimizer.zero_grad() train_losses = [] batch_train_losses = [] val_losses = [] train_rmses = [] batch_train_rmses = [] val_rmses = [] for i_iter, batch in enumerate(train_loader): imgs, sparses, targets, file_ids = batch imgs = Variable(imgs.cuda()) # (shape: (batch_size, h, w)) sparses = Variable(sparses.cuda()) # (shape: (batch_size, h, w)) targets = Variable(targets.cuda()) # (shape: (batch_size, h, w))
os.makedirs(snapshot_dir) train_dataset = DatasetVirtualKITTIAugmentation(virtualkitti_path=virtualkitti_path, max_iters=num_steps*batch_size, crop_size=(352, 352)) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) val_dataset = DatasetVirtualKITTIVal(virtualkitti_path=virtualkitti_path) val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=val_batch_size, shuffle=False, num_workers=1) criterion = MaskedL2Gauss().cuda() rmse_criterion = RMSE().cuda() model = DepthCompletionNet().cuda() model = torch.nn.DataParallel(model) model.train() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) optimizer.zero_grad() train_losses = [] batch_train_losses = [] val_losses = [] train_rmses = [] batch_train_rmses = [] val_rmses = [] for i_iter, batch in enumerate(train_loader): imgs, sparses, targets, file_ids = batch imgs = Variable(imgs.cuda()) # (shape: (batch_size, h, w)) sparses = Variable(sparses.cuda()) # (shape: (batch_size, h, w)) targets = Variable(targets.cuda()) # (shape: (batch_size, h, w)) means, log_vars = model(imgs, sparses) # (both of shape: (batch_size, 1, h, w))