class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed, model="QNetwork"): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network if model == "QNetwork": self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) if model == "QNetworkConvolutional": self.qnetwork_local = QNetworkConvolutional( state_size, action_size, seed).to(device) self.qnetwork_target = QNetworkConvolutional( state_size, action_size, seed).to(device) if model == "DuelingDQN": self.qnetwork_local = DuelingDQN(state_size, action_size, seed).to(device) self.qnetwork_target = DuelingDQN(state_size, action_size, seed).to(device) print("Model: " + model) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed, max_t=1000): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = DuelingDQN(state_size, action_size, seed).to(device) self.qnetwork_target = DuelingDQN(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 self.prio_b = PRIO_B self.b_step = 0 self.max_b_step = 2000 self.learnFirst = True def step(self, state, action, reward, next_state, done): # Save experience in replay memory #self.memory.add(state, action, reward, next_state, done) # Hassan : Save the experience in prioritized replay memory self.memory.prio_add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: #experiences = self.memory.sample() #self.learn(experiences, GAMMA) # Hassan : prioritized replay memory self.b_step = self.b_step + 1 experiences, indices = self.memory.prio_sample() self.learn(experiences, GAMMA, indices) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def get_beta(self, t): ''' Return the current exponent β based on its schedul. Linearly anneal β from its initial value β0 to 1, at the end of learning. :param t: integer. Current time step in the episode :return current_beta: float. Current exponent beta ''' #f_frac = min(float(t) / self.max_b_step, 1.0) #current_beta = self.prio_b + f_frac * (1. - self.prio_b) #current_beta = min(1,current_beta) self.prio_b = min(1, self.prio_b + PRIO_B_INC) return self.prio_b def learn(self, experiences, gamma, indices): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones, probabilities = experiences ## TODO: compute and minimize the loss "*** YOUR CODE HERE ***" # Get max predicted Q values (for next states) from target model # Hassan : Action is selected using greedy policy #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1) # Hassan : Double DQN # Selecting actions which maximizes while taking w (qnetwork_local) next_actions = self.qnetwork_local(next_states).detach().argmax( dim=1).unsqueeze(1) #next_actions_test = self.qnetwork_local(next_states).detach().max(1)[1].unsqueeze(1) # Hassan : from the example #print(torch.sum(next_actions-next_actions_test)) # Hassan : no difference found # Selecting q values of these actions using w' (qnetwork_target) Q_targets_next = self.qnetwork_target(next_states).gather( 1, next_actions) # Compute Q targets for current states # Hassan : This is TD Target Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model # Hassan : This is current value Q_expected = self.qnetwork_local(states).gather(1, actions) #Hassan : Compute the td_error td_error = Q_targets - Q_expected #print(td_error.detach().numpy()) #self.prio_b = min(1, PRIO_B_INC+self.prio_b) f_currbeta = self.get_beta(0) #print(f_currbeta) #f_currbeta = self.get_beta(self.b_step) #print(self.b_step) #print(t) #print(self.prio_b) weights_importance = probabilities.mul_( self.memory.__len__()).pow_(-f_currbeta) # Hassan : calculate max_weights_importance #probabilities_min = min(self.memory.priorities)/self.memory.cum_priorities probabilities_min = self.memory.min_priority / self.memory.cum_priorities max_weights_importance = (probabilities_min * self.memory.__len__())**(-f_currbeta) # Hassan : divide the weights importance with the max_weights_importance # Hassan : Improvement why not calculating the max_weights_importance = max(weights_importance)?? # Hassan : this will only calculating on the current list not the complete one #print(weights_importance) #print(weights_importance.max(0)[0]) #print(max_weights_importance) #if self.learnFirst: # self.learnFirst = False #else : # max_weights_importance = max_weights_importance[0] weights_final = weights_importance.div_(max_weights_importance) square_weighted_error = td_error.pow_(2).mul_(weights_final) loss = square_weighted_error.mean() # Hassan : after the observations observation from example, update was done after the weights calculation if self.prio_b > 0.5: self.memory.prio_update(indices, td_error.detach().numpy(), PRIO_E, PRIO_A) # Compute loss #loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # # Hassan : Here not after C steps w is changed though cahnged slightly after every learn step # Hassan : We can modify to change this after ever C steps self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = DuelingDQN(state_size, action_size, seed).to(device) self.qnetwork_target = DuelingDQN(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) self.priority_alpha = 0.0 #current best: 03 self.priority_beta_start = 0.4 self.priority_beta_frames = BUFFER_SIZE # Replay memory self.memory = PrioritizedReplayMemory(BUFFER_SIZE, self.priority_alpha, self.priority_beta_start, self.priority_beta_frames) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.push((state, action, reward, next_state, done)) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if self.memory.storage_size() > BATCH_SIZE: #print("storage == ", self.memory.storage_size()) experiences, idxes, weights = self.memory.sample(BATCH_SIZE) self.learn(experiences, idxes, weights, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, idxes, weights, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = zip(*experiences) states = torch.from_numpy( np.vstack([state for state in states if state is not None])).float().to(device) actions = torch.from_numpy( np.vstack([action for action in actions if action is not None])).long().to(device) rewards = torch.from_numpy( np.vstack([reward for reward in rewards if reward is not None])).float().to(device) next_states = torch.from_numpy( np.vstack([ next_state for next_state in next_states if next_state is not None ])).float().to(device) dones = torch.from_numpy( np.vstack([done for done in dones if done is not None ]).astype(np.uint8)).float().to(device) # Get max predicted Q values (for next states) from target model #print("state-action values:") #print(self.qnetwork_target(next_states).detach()) #print(next_states) next_target_Q = self.qnetwork_target.forward(next_states) #print("next_target_Q == ", next_target_Q) _, next_local_Q_index = torch.max( self.qnetwork_local.forward(next_states), axis=1) #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1) Q_targets_next = next_target_Q[range(next_target_Q.shape[0]), next_local_Q_index] Q_targets_next1 = Q_targets_next.reshape((len(Q_targets_next), 1)) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next1 * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) #print(Q_expected) #print(Q_targets) diff = Q_expected - Q_targets #print(diff) #diff = diff.mean() #print(idxes) #print(diff.detach().squeeze().abs().cpu().numpy().tolist()) #update the priority of the replay buffer self.memory.update_priorities( idxes, diff.detach().squeeze().abs().cpu().numpy().tolist()) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) * weights loss = loss.mean() # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed,max_t=1000): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = DuelingDQN(state_size, action_size, seed).to(device) self.qnetwork_target = DuelingDQN(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 self.prio_b = PRIO_B self.b_step = 0 self.max_b_step = 2000 self.learnFirst = True def step(self, state, action, reward, next_state, done): # Hassan : Save the experience in prioritized replay memory self.memory.prio_add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: self.b_step = self.b_step + 1 experiences, indices = self.memory.prio_sample() self.learn(experiences, GAMMA, indices) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def get_beta(self, t): ''' Return the current exponent β based on its schedul. Linearly anneal β from its initial value β0 to 1, at the end of learning. :param t: integer. Current time step in the episode :return current_beta: float. Current exponent beta ''' #f_frac = min(float(t) / self.max_b_step, 1.0) #current_beta = self.prio_b + f_frac * (1. - self.prio_b) #current_beta = min(1,current_beta) self.prio_b = min(1,self.prio_b + PRIO_B_INC) return self.prio_b def learn(self, experiences, gamma, indices): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones, probabilities = experiences "*** YOUR CODE HERE ***" # Double DQN implementation # Selecting actions which maximizes while taking w (qnetwork_local) next_actions = self.qnetwork_local(next_states).detach().argmax(dim=1).unsqueeze(1) # evluate best actions using w' (qnetwork_target) Q_targets_next = self.qnetwork_target(next_states).gather(1, next_actions) # Compute Q targets for current states (TD Target) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute the td_error td_error = Q_targets - Q_expected f_currbeta = self.get_beta(0) # Prioritized experience replay : calculating the final weights for calculating loss function weights_importance = probabilities.mul_(self.memory.__len__()).pow_(-f_currbeta) probabilities_min = self.memory.min_priority/self.memory.cum_priorities max_weights_importance = (probabilities_min * self.memory.__len__())**(-f_currbeta) weights_final = weights_importance.div_(max_weights_importance) # Compute mean squared weighted error square_weighted_error = td_error.pow_(2).mul_(weights_final) loss = square_weighted_error.mean() self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Prioritized experience replay : updating the priority of experience tuple in replay buffer self.memory.prio_update(indices,td_error.detach().numpy(),PRIO_E,PRIO_A) # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class Agent: """Interacts with and learns from the environment.""" def __init__(self, config): """Initialize an Agent object""" self.seed = random.seed(config["general"]["seed"]) self.config = config # Q-Network self.q = DuelingDQN(config).to(DEVICE) self.q_target = DuelingDQN(config).to(DEVICE) self.optimizer = optim.RMSprop(self.q.parameters(), lr=config["agent"]["learning_rate"]) self.criterion = F.mse_loss self.memory = ReplayBuffer(config) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def save_experiences(self, state, action, reward, next_state, done): """Prepare and save experience in replay memory""" reward = np.clip(reward, -1.0, 1.0) self.memory.add(state, action, reward, next_state, done) def _current_step_is_a_learning_step(self): """Check if the current step is an update step""" self.t_step = (self.t_step + 1) % self.config["agent"]["update_rate"] return self.t_step == 0 def _enough_samples_in_memory(self): """Check if minimum amount of samples are in memory""" return len(self.memory) > self.config["train"]["batch_size"] def epsilon_greedy_action_selection(self, action_values, eps): """Epsilon-greedy action selection""" if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice( np.arange(self.config["general"]["action_size"])) def act(self, state, eps=0.0): """Returns actions for given state as per current policy""" state = torch.from_numpy(state).float().unsqueeze(0).to(DEVICE) self.q.eval() with torch.no_grad(): action_values = self.q(state) self.q.train() return self.epsilon_greedy_action_selection(action_values, eps) def _calc_loss(self, states, actions, rewards, next_states, dones): """Calculates loss for a given experience batch""" q_eval = self.q(states).gather(1, actions) q_eval_next = self.q(next_states) _, q_argmax = q_eval_next.detach().max(1) q_next = self.q_target(next_states) q_next = q_next.gather(1, q_argmax.unsqueeze(1)) q_target = rewards + (self.config["agent"]["gamma"] * q_next * (1 - dones)) loss = self.criterion(q_eval, q_target) return loss def _update_weights(self, loss): """update the q network weights""" torch.nn.utils.clip_grad.clip_grad_value_(self.q.parameters(), 1.0) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def learn(self): """Update network using one sample of experience from memory""" if self._current_step_is_a_learning_step( ) and self._enough_samples_in_memory(): states, actions, rewards, next_states, dones = self.memory.sample( self.config["train"]["batch_size"]) loss = self._calc_loss(states, actions, rewards, next_states, dones) self._update_weights(loss) self._soft_update(self.q, self.q_target) def _soft_update(self, local_model, target_model): """Soft update target network parameters: θ_target = τ*θ_local + (1 - τ)*θ_target""" for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_( self.config["agent"]["tau"] * local_param.data + (1.0 - self.config["agent"]["tau"]) * target_param.data) def save(self): """Save the network weights""" helper.mkdir( os.path.join(".", *self.config["general"]["checkpoint_dir"], self.config["general"]["env_name"])) current_date_time = helper.get_current_date_time() current_date_time = current_date_time.replace(" ", "__").replace( "/", "_").replace(":", "_") torch.save( self.q.state_dict(), os.path.join(".", *self.config["general"]["checkpoint_dir"], self.config["general"]["env_name"], "ckpt_" + current_date_time)) def load(self): """Load latest available network weights""" list_of_files = glob.glob( os.path.join(".", *self.config["general"]["checkpoint_dir"], self.config["general"]["env_name"], "*")) latest_file = max(list_of_files, key=os.path.getctime) self.q.load_state_dict(torch.load(latest_file)) self.q_target.load_state_dict(torch.load(latest_file))
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed, gamma=GAMMA, buffer_size=BUFFER_SIZE, batch_size=BATCH_SIZE, update_every=UPDATE_EVERY, lr=LR, tau=TAU ): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) self.gamma = gamma self.batch_size = batch_size # Q-Network self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model_local = DuelingDQN(state_size, action_size, seed).to(self.device) self.model_target = DuelingDQN(state_size, action_size, seed).to(self.device) self.optimizer = optim.Adam(self.model_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer( action_size=action_size, buffer_size=BUFFER_SIZE, batch_size=BATCH_SIZE, seed=seed, device=self.device ) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.update(experiences) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.FloatTensor(state).float().unsqueeze(0).to(self.device) self.model_local.eval() with torch.no_grad(): qvals = self.model_local.forward(state) self.model_local.train() # Epsilon-greedy action selection if random.random() > eps: action = np.argmax(qvals.cpu().detach().numpy()) return action else: return random.choice(np.arange(self.action_size)) def update(self, batch): """Update value parameters using given batch of experience tuples. Params ====== batch (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = batch # Get expected Q values from local model curr_Q = self.model_local.forward(states).gather(1, actions) # curr_Q = curr_Q.squeeze(1) # Get max predicted Q values (for next states) from target model max_next_Q = self.model_target.forward(next_states).detach().max(1)[0].unsqueeze(1) expected_Q = rewards + (self.gamma * max_next_Q * (1 - dones)) loss = F.mse_loss(curr_Q, expected_Q) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # update target model self.update_target(self.model_local, self.model_target, TAU) def update_target(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)