t_loader_test = torch.utils.data.DataLoader(t_set_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) extractor = Extractor() s1_classifier = Classifier(num_classes=num_classes) s2_classifier = Classifier(num_classes=num_classes) s3_classifier = Classifier(num_classes=num_classes) s1_t_discriminator = Discriminator() s2_t_discriminator = Discriminator() s3_t_discriminator = Discriminator() extractor.load_state_dict( torch.load( osp.join( MAIN_DIR, "MSDA/A_W_2_D_Open/bvlc_A_W_2_D/pretrain/bvlc_extractor.pth"))) extractor = nn.DataParallel(extractor) extractor = extractor.cuda() s1_classifier.load_state_dict( torch.load( osp.join( MAIN_DIR, "MSDA/A_W_2_D_Open/bvlc_A_W_2_D/pretrain/office-home/bvlc_s1_cls.pth" ))) s2_classifier.load_state_dict( torch.load( osp.join( MAIN_DIR,
s2_loader_raw = torch.utils.data.DataLoader(s2_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_raw = torch.utils.data.DataLoader(t_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_test = torch.utils.data.DataLoader(t_set_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) s1_loader_raw1 = torch.utils.data.DataLoader(s1_set, batch_size=1, shuffle=shuffle, pin_memory=True) s2_loader_raw1 = torch.utils.data.DataLoader(s2_set, batch_size=1, shuffle=shuffle, pin_memory=True) t_loader_raw1 = torch.utils.data.DataLoader(t_set, batch_size=1, shuffle=shuffle,pin_memory=True) extractor = Extractor().cpu() extractor.load_state_dict(torch.load("/Users/bytedabce/PycharmProjects/mix_net/train_eval/pre_train_model/bvlc_extractor.pth")) s1_classifier = Classifier(num_classes=num_classes).cpu() s2_classifier = Classifier(num_classes=num_classes).cpu() s1_classifier.load_state_dict(torch.load("/Users/bytedabce/PycharmProjects/mix_net/train_eval/pre_train_model/bvlc_s1_cls.pth")) s2_classifier.load_state_dict(torch.load("/Users/bytedabce/PycharmProjects/mix_net/train_eval/pre_train_model/bvlc_s2_cls.pth")) s1_t_discriminator = Discriminator().cpu() s2_t_discriminator = Discriminator().cpu() def print_log(step, epoch, epoches, lr, l1, l2, l3, l4, l5, l6, l7, l8, flag, ploter, count): print ("Step [%d/%d] Epoch [%d/%d] lr: %f, s1_cls_loss: %.4f, s2_cls_loss: %.4f, s1_t_dis_loss: %.4f, " \ "s2_t_dis_loss: %.4f, s1_t_confusion_loss_s1: %.4f, s1_t_confusion_loss_t: %.4f, " \ "s2_t_confusion_loss_s2: %.4f, s2_t_confusion_loss_t: %.4f, selected_source: %s" \ % (step, steps, epoch, epoches, lr, l1, l2, l3, l4, l5, l6, l7, l8, flag),
t_loader_raw = torch.utils.data.DataLoader(t_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_test = torch.utils.data.DataLoader(t_set_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) extractor = Extractor() s1_classifier = Classifier(num_classes=num_classes) s2_classifier = Classifier(num_classes=num_classes) s1_t_discriminator = Discriminator() s2_t_discriminator = Discriminator() extractor.load_state_dict( torch.load(osp.join(MAIN_DIR, "MSDA/pretrain/office/bvlc_extractor.pth"))) extractor = nn.DataParallel(extractor) extractor = extractor.cuda() s1_classifier.load_state_dict( torch.load(osp.join(MAIN_DIR, "MSDA/pretrain/office/bvlc_s1_cls.pth"))) s2_classifier.load_state_dict( torch.load(osp.join(MAIN_DIR, "MSDA/pretrain/office/bvlc_s2_cls.pth"))) s1_classifier = nn.DataParallel(s1_classifier) s2_classifier = nn.DataParallel(s2_classifier) s1_classifier = s1_classifier.cuda() s2_classifier = s2_classifier.cuda() s1_t_discriminator = nn.DataParallel(s1_t_discriminator) s1_t_discriminator = s1_t_discriminator.cuda() s2_t_discriminator = nn.DataParallel(s2_t_discriminator)
s2_loader_raw = torch.utils.data.DataLoader(s2_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_raw = torch.utils.data.DataLoader(t_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_test = torch.utils.data.DataLoader(t_set_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) extractor = Extractor().cuda(gpu_id) extractor.load_state_dict( torch.load( "/home/xuruijia/ZJY/ADW/bvlc_A_W_2_D/pretrain/bvlc_extractor.pth")) s1_classifier = Classifier(num_classes=num_classes).cuda(gpu_id) s2_classifier = Classifier(num_classes=num_classes).cuda(gpu_id) s1_classifier.load_state_dict( torch.load("/home/xuruijia/ZJY/ADW/bvlc_A_W_2_D/pretrain/bvlc_s1_cls.pth")) s2_classifier.load_state_dict( torch.load("/home/xuruijia/ZJY/ADW/bvlc_A_W_2_D/pretrain/bvlc_s2_cls.pth")) s1_t_discriminator = Discriminator().cuda(gpu_id) s2_t_discriminator = Discriminator().cuda(gpu_id) def print_log(step, epoch, epoches, lr, l1, l2, l3, l4, l5, l6, l7, l8, flag, ploter, count): print "Step [%d/%d] Epoch [%d/%d] lr: %f, s1_cls_loss: %.4f, s2_cls_loss: %.4f, s1_t_dis_loss: %.4f, " \ "s2_t_dis_loss: %.4f, s1_t_confusion_loss_s1: %.4f, s1_t_confusion_loss_t: %.4f, " \
target_features, target_gas_labels, target_liquid_labels = info_transfer2FloatTensor(target_features, target_labels) source_training_liquid_labels = source_training_liquid_labels / math.sqrt(1000) source_validation_liquid_labels = source_validation_liquid_labels / math.sqrt(1000) target_liquid_labels =target_liquid_labels / math.sqrt(1000) length_target = target_gas_labels.size()[0] target_dataset = Data.TensorDataset(target_features,target_liquid_labels) Batch_size = 128 target_loader = Data.DataLoader(dataset=target_dataset, batch_size=Batch_size, shuffle=False, num_workers=2) E = Extractor() R = Regressor() E.load_state_dict(torch.load('E_l2.pkl')) R.load_state_dict(torch.load('R_l2.pkl')) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") E.to(device) R.to(device) prediction_target, reference_target = predict(target_loader, E, R) #plot standard_line_x = [0, 6500] standard_line_y = [0, 6500] error_line_x_p500 = [0, 6000] error_line_y_p500 = [500, 6500] error_line_x_n500 = [500, 6500] error_line_y_n500 = [0, 6000] l_standar = plt.plot(standard_line_x, standard_line_y, 'k-', label='standard') l_p500 = plt.plot(error_line_x_p500, error_line_y_p500, ':', color='lime', label='$\pm500kg/h$')