예제 #1
0
def train_sst(conf):
    if conf.model_type == 'attention':
        probe_net = AttentionNet(attention_stages=conf.attention_stages, dim=conf.feat_dim)
        gallery_net = AttentionNet(attention_stages=conf.attention_stages, dim=conf.feat_dim) 
    elif conf.model_type == 'mobilefacenet':
        probe_net = MobileFaceNet(conf.feat_dim)
        gallery_net = MobileFaceNet(conf.feat_dim) 
        
    moving_average(probe_net, gallery_net, 0)
    prototype = Prototype(conf.feat_dim, conf.queue_size, conf.scale,conf.margin, conf.loss_type).cuda()     
    criterion = torch.nn.CrossEntropyLoss().cuda()
    optimizer = optim.SGD(probe_net.parameters(), lr=conf.lr, momentum=conf.momentum, weight_decay=5e-4)
    lr_schedule = optim.lr_scheduler.MultiStepLR(optimizer, milestones=conf.lr_decay_epochs, gamma=0.1)
    probe_net = torch.nn.DataParallel(probe_net).cuda()
    gallery_net = torch.nn.DataParallel(gallery_net).cuda()

    train_dict = trainlist_to_dict(conf.source_file)

    for epoch in range(1, conf.epochs + 1):
        if epoch == 1:
            curr_train_list, curr_id_list = train_sample(train_dict, conf.class_num, conf.queue_size)
        else:
            curr_train_list, curr_id_list = train_sample(train_dict, conf.class_num, conf.queue_size, curr_id_list)
        data_loader = DataLoader(lmdb_utils.SingleLMDBDataset(conf.source_lmdb, curr_train_list, conf.key),
                                 conf.batch_size, shuffle = False, num_workers=4, drop_last = True)
        train_one_epoch(data_loader, probe_net, gallery_net, prototype, optimizer, 
            criterion, epoch, conf)
        lr_schedule.step()
예제 #2
0
    def _resume_train(
        self, model_path, lr
    ):  # only for arcface, change 'metric' in config to arcface to make _learner() work
        checkpoint = torch.load(model_path)
        model = MobileFaceNet(self.config.embedding_size).to(self.device)
        metric = ArcFace(self.embedding_size, self.class_num).to(self.device)
        model = nn.DataParallel(model)
        metric = nn.DataParallel(metric)

        model.load_state_dict(checkpoint['net'])

        net_params = add_weight_decay(model, self.config.weight_decay)
        metric_params = add_weight_decay(metric, self.config.class_wd)
        parameters = net_params + metric_params
        optimizer = optim.SGD(parameters,
                              lr=lr,
                              momentum=self.config.momentum,
                              weight_decay=self.config.weight_decay)
        current_lr = optimizer.param_groups[0]['lr']
        self.logger.info(
            'Resume train {}, metric state is arcface, basic learning rate is {:f}'
            .format(model_path, current_lr))
        accuracy, threshold = test.test(
            self.config, model
        )  #f"./{self.config.checkpoints_path}/epoch{e}_{batch_idx}.pth"
        self.logger.info(
            'Loading model from \'{}\',\t test accuracy = {:.4f}, threshold = {:.4f}\n'
            .format(model_path, accuracy, threshold))
        self._learner(optimizer, model, metric)
예제 #3
0
    def __init__(self, use_mobilfacenet):

        self.embedding_size = 512
        self.net_depth = 50
        self.drop_ratio = 0.6
        self.net_mode = 'ir_se'  # or 'ir'
        self.threshold = 1.2
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        self.face_detector = MTCNN()

        self.test_transform = trans.Compose([
            trans.ToTensor(),
            trans.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])

        if use_mobilfacenet:
            self.model = MobileFaceNet(self.embedding_size).to(self.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(self.net_depth, self.drop_ratio,
                                  self.net_mode).to(self.device)
            print('{}_{} model generated'.format(self.net_mode,
                                                 self.net_depth))

        self.threshold = self.threshold
예제 #4
0
    def __init__(self, conf, inference=False):
        print(conf)
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            self.writer = SummaryWriter(
                '/home/zzg/DeepLearning/InsightFace_Pytorch/work_space/log')
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.board_loss_every = len(self.loader) // 29000  #100
            self.evaluate_every = len(self.loader) // 500  ##10
            self.save_every = len(self.loader) // 290  #5
            #            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(self.loader.dataset.root.parent)
            self.agedb_30, self.agedb_30_issame = get_val_data(
                '/home/zzg/DeepLearning/InsightFace_Pytorch/data/faces_emore')
        else:
            self.threshold = conf.threshold
예제 #5
0
    def __init__(self, conf, inference=False):
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            # print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            # print('{}_{} model generated done !'.format(conf.net_mode, conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            # print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            rootdir = os.path.join(args.root_dir, args.rec_path)
            self.board_loss_every = len(self.loader) // len(self.loader)
            self.evaluate_every = len(self.loader) // 1
            # self.save_every = len(self.loader)//len(self.loader)   # 5
            print('board loss every: {} -> evaluate_every: {} \n'.format(
                self.board_loss_every, self.evaluate_every))
            print('loader paths of validation dataset {}'.format(rootdir))
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                rootdir)
        else:
            self.threshold = conf.threshold
예제 #6
0
    def __init__(self, conf, inference=False):
        print(conf)
        print(conf.use_mobilfacenet)
        input("CONF")
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio, conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode, conf.net_depth))
        
        if not inference:
            self.milestones = conf.milestones
            # Dataset Loader
            # ritorna un loader dataset ImageLoader
            self.loader, self.class_num = get_train_loader(conf)        

            # Classe di tensorboardX per salvare i log
            # log_path indica il percorso dove sono salvate le statistiche
            self.writer = SummaryWriter(conf.log_path)


            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size, classnum=self.class_num).to(conf.device)

            print('two model heads generated')
            # paras_only_bn contiene i layer con i parametri della batchnorm
            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)
            
            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn[:-1], 'weight_decay': 4e-5},
                                    {'params': [paras_wo_bn[-1]] + [self.head.kernel], 'weight_decay': 4e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
            else:
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn + [self.head.kernel], 'weight_decay': 5e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
            print(self.optimizer)
#             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            # Parametri che indicano ogni quanto salvare i modelli e le epoche
            self.board_loss_every = len(self.loader)//10
            self.evaluate_every = len(self.loader)//10
            self.save_every = len(self.loader)//5
            print("DATASET")
            print(self.loader.dataset.root)
            # ritornano gli array e le labels delle diverse cartelle del dataset VALIDATION
            self.agedb_30 ,self.agedb_30_issame = get_val_data(self.loader.dataset.root.parent)
        else:
            self.threshold = conf.threshold
예제 #7
0
    def __init__(self, conf, inference=False):
        accuracy = 0.0
        logger.debug(conf)
        if conf.use_mobilfacenet:
            # self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            self.model = MobileFaceNet(conf.embedding_size).cuda()
            logger.debug('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio, conf.net_mode).cuda()#.to(conf.device)
            logger.debug('{}_{} model generated'.format(conf.net_mode, conf.net_depth))
        if not inference:
            self.milestones = conf.milestones
            logger.info('loading data...')
            self.loader, self.class_num = get_train_loader(conf, 'emore', sample_identity=True)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = CircleLoss(m=0.25, gamma=256.0).cuda()

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn[:-1], 'weight_decay': 4e-5},
                                    {'params': [paras_wo_bn[-1]], 'weight_decay': 4e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
            else:
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn, 'weight_decay': 5e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
            # self.optimizer = torch.nn.parallel.DistributedDataParallel(optimizer,device_ids=[conf.argsed])
            # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            if conf.fp16:
                self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level="O2")
                self.model = DistributedDataParallel(self.model).cuda()
            else:
                self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[conf.argsed]).cuda() #add line for distributed

            self.board_loss_every = len(self.loader)//100
            self.evaluate_every = len(self.loader)//2
            self.save_every = len(self.loader)//2
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(Path(self.loader.dataset.root).parent)
        else:
            self.threshold = conf.threshold
            self.loader, self.query_ds, self.gallery_ds = get_test_loader(conf)
예제 #8
0
    def __init__(self, conf, inference=False, transfer=0, ext='final'):
        pprint.pprint(conf)
        self.conf = conf
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            tmp_idx = ext.rfind('_')  # find the last '_' to replace it by '/'
            self.ext = '/' + ext[:tmp_idx] + '/' + ext[tmp_idx + 1:]
            self.writer = SummaryWriter(str(conf.log_path) + self.ext)
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            self.optimizer = optim.Adam(
                list(self.model.parameters()) + list(self.head.parameters()),
                conf.lr)
            print(self.optimizer)
            # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.save_freq = len(self.loader) // 5  #//5 # originally, 100
            self.evaluate_every = len(self.loader)  #//5 # originally, 10
            self.save_every = len(self.loader)  #//2 # originally, 5
            # self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(self.loader.dataset.root.parent)
            # self.val_112, self.val_112_issame = get_val_pair(self.loader.dataset.root.parent, 'val_112')
        else:
            self.threshold = conf.threshold

        self.train_losses = []
        self.train_counter = []
        self.test_losses = []
        self.test_accuracy = []
        self.test_counter = []
예제 #9
0
    def __init__(self, conf, inference=False):
        print(conf)
        self.lr=conf.lr
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
        ###############################  ir_se50  ########################################
            if conf.struct =='ir_se_50':
                self.model = Backbone(conf.net_depth, conf.drop_ratio, conf.net_mode).to(conf.device)
            
                print('{}_{} model generated'.format(conf.net_mode, conf.net_depth))
        ###############################  resnet101  ######################################
            if conf.struct =='ir_se_101':
                self.model = resnet101().to(conf.device)
                print('resnet101 model generated')
            
        
        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)        

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            
        ###############################  ir_se50  ########################################
            if conf.struct =='ir_se_50':
                self.head = Arcface(embedding_size=conf.embedding_size, classnum=self.class_num).to(conf.device)
                self.head_race = Arcface(embedding_size=conf.embedding_size, classnum=4).to(conf.device)
        
        ###############################  resnet101  ######################################
            if conf.struct =='ir_se_101':
                self.head = ArcMarginModel(embedding_size=conf.embedding_size,classnum=self.class_num).to(conf.device)
                self.head_race = ArcMarginModel(embedding_size=conf.embedding_size,classnum=self.class_num).to(conf.device)
            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)
            
            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn[:-1], 'weight_decay': 4e-5},
                                    {'params': [paras_wo_bn[-1]] + [self.head.kernel] + [self.head_race.kernel], 'weight_decay': 4e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
            else:
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn + [self.head.kernel] + [self.head_race.kernel], 'weight_decay': 5e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
            print(self.optimizer)
#             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')    
            print('len of loader:',len(self.loader)) 
            self.board_loss_every = len(self.loader)//min(len(self.loader),100)
            self.evaluate_every = len(self.loader)//1
            self.save_every = len(self.loader)//1
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(conf.val_folder)
        else:
            #self.threshold = conf.threshold
            pass
예제 #10
0
def main():
    #video load
    VideoPath = "../videos/3.mp4"
    imagelist = Video2list(VideoPath)

    #face detect
    mtcnn_path = os.path.join(os.path.dirname(__file__), 'mtcnn-model')
    detector = MtcnnDetector(model_folder=mtcnn_path,
                             ctx=mx.cpu(0),
                             num_worker=1,
                             minsize=80,
                             accurate_landmark=True,
                             threshold=[0.6, 0.7, 0.9])
    Videoimginfo = []
    for img in imagelist:
        ret = detector.detect_face(img)
        Videoimginfo.append(ret)

    #face feature get
    model = MobileFaceNet(512)
    model_static_cnn = torch.load("model_mobilefacenet.pth",
                                  map_location=lambda storage, loc: storage)
    net_model_static_cnn = {}
    for k, v in model_static_cnn.items():
        if k == "fc2.weight":
            continue
        if k == "fc2.bias":
            continue
        net_model_static_cnn[k] = v
    model.load_state_dict(net_model_static_cnn)
    model.eval()
    imageinfo = []
    allFaceFeture = []
    for item in range(len(imagelist)):
        if Videoimginfo[item] is not None:
            image = imagelist[item]
            ret = Videoimginfo[item]
            facefeature = Facefeature(ret, image, model)
            imageinfo.append(len(facefeature[0]))
            allFaceFeture += facefeature[0]
            Videoimginfo[item] = [facefeature[1], facefeature[2]]
        else:
            imageinfo.append(0)

    Facecalsslist, classnum = dbscan(np.array(allFaceFeture), distance, minPt)
    print(Facecalsslist, classnum)

    #pic2video
    fourcc = cv2.VideoWriter_fourcc(*"MJPG")
    videoWrite = cv2.VideoWriter(
        'output.avi', fourcc, 25,
        (imagelist[0].shape[1], imagelist[0].shape[0]))
    font = cv2.FONT_HERSHEY_SIMPLEX
    cc = 0
    flag = 0
    for item in range(len(imageinfo)):
        img = imagelist[item]
        if imageinfo[item] == 0:
            videoWrite.write(img)
            cv2.imwrite("./ll/%d.jpg" % cc, img)
        else:
            #in this one pic may be has more than one pic
            # rectangle point lable ;
            bbox, point = Videoimginfo[item]
            for q in range(len(point)):
                for i in range(5):
                    cv2.circle(img, (int(point[q][i]), (int(point[q][i + 5]))),
                               3, (0, 255, 0), -1)
                cv2.rectangle(img, (int(bbox[q][0]), int(bbox[q][1])),
                              (int(bbox[q][2]), int(bbox[q][3])),
                              (0, 255, 255), 2)
                cv2.putText(img, "%d" % Facecalsslist[flag],
                            (int(bbox[q][0]), int(bbox[q][1])), font, 1.2,
                            (255, 255, 255), 2)
                flag += 1
            cv2.imwrite("./ll/%d.jpg" % cc, img)
            videoWrite.write(img)
        cc += 1
    videoWrite.release()
예제 #11
0
    def __init__(self, conf, inference=False, need_loader=True):
        print(conf)
        if conf.use_mobilfacenet:
            # self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            self.model = torch.nn.DataParallel(
                MobileFaceNet(conf.embedding_size)).cuda()
            print('MobileFaceNet model generated')
        else:
            # self.model = Backbone(conf.net_depth, conf.drop_ratio, conf.net_mode).to(conf.device)
            self.model = torch.nn.DataParallel(
                Backbone(conf.net_depth, conf.drop_ratio,
                         conf.net_mode)).cuda()
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            if need_loader:
                # self.loader, self.class_num = get_train_loader(conf)

                self.dataset = Dataset2()
                self.loader = DataLoader(self.dataset,
                                         batch_size=conf.batch_size,
                                         num_workers=conf.num_workers,
                                         shuffle=True,
                                         pin_memory=True)

                # self.loader = Loader2(conf)
                self.class_num = 85164
                print(self.class_num, 'classes, load ok ')
            else:
                import copy
                conf_t = copy.deepcopy(conf)
                conf_t.data_mode = 'emore'
                self.loader, self.class_num = get_train_loader(conf_t)
                print(self.class_num)
                self.class_num = 85164
            lz.mkdir_p(conf.log_path, delete=True)
            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            if conf.loss == 'arcface':
                self.head = Arcface(embedding_size=conf.embedding_size,
                                    classnum=self.class_num).to(conf.device)
            elif conf.loss == 'softmax':
                self.head = MySoftmax(embedding_size=conf.embedding_size,
                                      classnum=self.class_num).to(conf.device)
            else:
                raise ValueError(f'{conf.loss}')

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)
            print('optimizers generated')
            self.board_loss_every = 100  # len(self.loader) // 100
            self.evaluate_every = len(self.loader) // 10
            self.save_every = len(self.loader) // 5
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                self.loader.dataset.root_path)
        else:
            self.threshold = conf.threshold
예제 #12
0
    def __init__(self, conf, inference=False, embedding_size=512):
        conf.embedding_size = embedding_size
        print(conf)

        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).cuda()
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).cuda()
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        parameter_num_cal(self.model)

        self.milestones = conf.milestones
        self.loader, self.class_num = get_train_loader(conf)
        self.step = 0
        self.agedb_30, self.cfp_fp, self.lfw, self.calfw, self.cplfw, self.vgg2_fp, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame, self.calfw_issame, self.cplfw_issame, self.vgg2_fp_issame = get_val_data(
            self.loader.dataset.root.parent)
        self.writer = SummaryWriter(conf.log_path)

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0

            if conf.multi_sphere:
                if conf.arcface_loss:
                    self.head = ArcfaceMultiSphere(
                        embedding_size=conf.embedding_size,
                        classnum=self.class_num,
                        num_shpere=conf.num_sphere,
                        m=conf.m).to(conf.device)
                elif conf.am_softmax:
                    self.head = MultiAm_softmax(
                        embedding_size=conf.embedding_size,
                        classnum=self.class_num,
                        num_sphere=conf.num_sphere,
                        m=conf.m).to(conf.device)
                else:
                    self.head = MultiSphereSoftmax(
                        embedding_size=conf.embedding_size,
                        classnum=self.class_num,
                        num_sphere=conf.num_sphere).to(conf.device)

            else:
                if conf.arcface_loss:
                    self.head = Arcface(embedding_size=conf.embedding_size,
                                        classnum=self.class_num).to(
                                            conf.device)
                elif conf.am_softmax:
                    self.head = Am_softmax(embedding_size=conf.embedding_size,
                                           classnum=self.class_num).to(
                                               conf.device)
                else:
                    self.head = Softmax(embedding_size=conf.embedding_size,
                                        classnum=self.class_num).to(
                                            conf.device)

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                if conf.multi_sphere:
                    self.optimizer = optim.SGD([{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + self.head.kernel_list,
                        'weight_decay':
                        4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                                               lr=conf.lr,
                                               momentum=conf.momentum)
                else:
                    self.optimizer = optim.SGD(
                        [{
                            'params': paras_wo_bn[:-1],
                            'weight_decay': 4e-5
                        }, {
                            'params': [paras_wo_bn[-1]] + [self.head.kernel],
                            'weight_decay': 4e-4
                        }, {
                            'params': paras_only_bn
                        }],
                        lr=conf.lr,
                        momentum=conf.momentum)
            else:
                if conf.multi_sphere:
                    self.optimizer = optim.SGD(
                        [{
                            'params': paras_wo_bn + self.head.kernel_list,
                            'weight_decay': 5e-4
                        }, {
                            'params': paras_only_bn
                        }],
                        lr=conf.lr,
                        momentum=conf.momentum)
                else:
                    self.optimizer = optim.SGD(
                        [{
                            'params': paras_wo_bn + [self.head.kernel],
                            'weight_decay': 5e-4
                        }, {
                            'params': paras_only_bn
                        }],
                        lr=conf.lr,
                        momentum=conf.momentum)

            print(self.optimizer)

            self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
                self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.board_loss_every = len(self.loader) // 100
            self.evaluate_every = len(self.loader) // 10
            self.save_every = len(self.loader) // 5
            self.agedb_30, self.cfp_fp, self.lfw, self.calfw, self.cplfw, self.vgg2_fp, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame, self.calfw_issame, self.cplfw_issame, self.vgg2_fp_issame = get_val_data(
                self.loader.dataset.root.parent)
        else:
            self.threshold = conf.threshold
예제 #13
0
    def __init__(self, ConfigTable):
        """ Train on pytorch:
            Step1: Create a dataloader to prepare train data.
            Step2: Create a logger to write train imfomartion to your .log.
            Step3: Choose your network backbone, metric function, loss function.
            Step4: In pytorch the weight_decay will be applied to bias, batchnorm layer, change weight_decay to 0 at these params.
            Step5: Define the optimizer eg. SGD, Adam
            Step6: Now, let's start your train
        """
        self.config = ConfigTable  # Config table for train including lr_step, checkpoints
        os.makedirs(self.config.checkpoints_path, exist_ok=True)
        nowtime = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
        self.logger = get_logger("./" + nowtime + "-train.log")
        self.logger.info(
            'Successfully create train log file at \'./{}-train.log\''.format(
                nowtime))
        # dataloader
        self.dataloader, self.class_num = load_data(self.config, training=True)
        self.embedding_size = self.config.embedding_size
        self.device = self.config.device
        self.logger.info(
            'Successfully create DataLoader. In data the total of class numbers is {} and embedding size is {}'
            .format(self.class_num, self.embedding_size))
        # generate network
        if self.config.backbone == 'myfmobile':
            self.net = MobileFaceNet(self.embedding_size).to(
                self.device
            )  # Create net and copy net tensor to the GPU, do it before loading data
            self.logger.info("Network backbone is {}".format(
                self.config.backbone))
            self.logger.info("{}".format(self.net))
        elif self.config.backbone == 'resnet20':
            self.net = ResNet20().to(self.device)
            self.logger.info("Network backbone is {}".format(
                self.config.backbone))
            self.logger.info("{}".format(self.net))

        if self.config.metric == 'arcface':
            self.metric = ArcFace(self.embedding_size,
                                  self.class_num).to(self.device)
            self.logger.info("Metric fucntion is {}".format(
                self.config.metric))
            self.logger.info("{}".format(self.metric))

        elif self.config.metric == 'softmax':
            self.metric = DenseClassifier(self.embedding_size,
                                          self.class_num).to(self.device)
            self.logger.info("Metric fucntion is {}".format(
                self.config.metric))
            self.logger.info("{}".format(self.metric))

        elif self.config.metric == 'normlinear':
            self.metric = NormLinear(512, self.class_num).to(self.device)
            self.logger.info("Metric fucntion is {}".format(
                self.config.metric))
            self.logger.info("{}".format(self.metric))
        else:
            self.logger.info("Please specify a metric")
            exit(0)

        self._weight_init()
        # Send data to multiple gpu
        self.net = nn.DataParallel(self.net)
        self.metric = nn.DataParallel(self.metric)
        # Remove weight_decay in batchnorm and convolution bias, refer to https://arxiv.org/abs/1706.05350
        net_params = add_weight_decay(self.net, self.config.weight_decay)
        metric_params = add_weight_decay(self.metric, self.config.class_wd)
        self.parameters = net_params + metric_params

        if self.config.loss == 'focal_loss':
            self.criterion = FocalLoss(gamma=2)
            self.logger.info("Loss function is FocalLoss")
        else:
            self.criterion = nn.CrossEntropyLoss()
            self.logger.info("Loss function is CrossEntropyLoss")

        if self.config.optimizer == 'sgd':
            self.optimizer = optim.SGD(self.parameters,
                                       lr=self.config.lr,
                                       momentum=self.config.momentum,
                                       weight_decay=self.config.weight_decay)
            self.logger.info("Optimaizer is SGD")
            self.logger.info("{}".format(self.optimizer))
        else:
            self.optimizer = optim.Adam(self.parameters,
                                        lr=self.config.lr,
                                        weight_decay=self.config.weight_decay)
            self.logger.info("Optimaizer is Adam")
            self.logger.info("{}".format(self.optimizer))
예제 #14
0
    def __init__(self, conf, inference=False):
        print(conf)

        self.num_splits = int(conf.meta_file.split('_labels.txt')[0][-1])

        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if conf.device > 1:
            gpu_ids = list(
                range(0, min(torch.cuda.device_count(), conf.device)))
            self.model = nn.DataParallel(self.model, device_ids=gpu_ids).cuda()
        else:
            self.model = self.model.cuda()

        if not inference:
            self.milestones = conf.milestones

            if conf.remove_single is True:
                conf.meta_file = conf.meta_file.replace('.txt', '_clean.txt')
            meta_file = open(conf.meta_file, 'r')
            meta = meta_file.readlines()
            pseudo_all = [int(item.split('\n')[0]) for item in meta]
            pseudo_classnum = set(pseudo_all)
            if -1 in pseudo_classnum:
                pseudo_classnum = len(pseudo_classnum) - 1
            else:
                pseudo_classnum = len(pseudo_classnum)
            print('classnum:{}'.format(pseudo_classnum))

            pseudo_classes = [
                pseudo_all[count[index]:count[index + 1]]
                for index in range(self.num_splits)
            ]
            meta_file.close()

            train_dataset = [get_train_dataset(conf.emore_folder)] + [
                get_pseudo_dataset([conf.pseudo_folder, index + 1],
                                   pseudo_classes[index], conf.remove_single)
                for index in range(self.num_splits)
            ]
            self.class_num = [num for _, num in train_dataset]
            print('Loading dataset done')

            train_longest_size = [len(item[0]) for item in train_dataset]
            temp = int(np.floor(conf.batch_size // (self.num_splits + 1)))
            self.batch_size = [conf.batch_size - temp * self.num_splits
                               ] + [temp] * self.num_splits
            train_longest_size = max([
                int(np.floor(td / bs))
                for td, bs in zip(train_longest_size, self.batch_size)
            ])
            train_sampler = [
                GivenSizeSampler(td[0],
                                 total_size=train_longest_size * bs,
                                 rand_seed=None)
                for td, bs in zip(train_dataset, self.batch_size)
            ]

            self.train_loader = [
                DataLoader(train_dataset[k][0],
                           batch_size=self.batch_size[k],
                           shuffle=False,
                           pin_memory=conf.pin_memory,
                           num_workers=conf.num_workers,
                           sampler=train_sampler[k])
                for k in range(1 + self.num_splits)
            ]
            print('Loading loader done')

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = [
                Arcface(embedding_size=conf.embedding_size,
                        classnum=self.class_num[0]),
                Arcface(embedding_size=conf.embedding_size,
                        classnum=pseudo_classnum)
            ]

            if conf.device > 1:
                self.head = [
                    nn.DataParallel(self.head[0], device_ids=gpu_ids).cuda(),
                    nn.DataParallel(self.head[1], device_ids=gpu_ids).cuda()
                ]
            else:
                self.head = [self.head[0].cuda(), self.head[1].cuda()]

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model.module)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.parameters()],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                params = [a.module.parameters() for a in self.head]
                params = list(params[0]) + list(params[1])
                #from IPython import embed;embed()
                self.optimizer = optim.SGD([{
                    'params': paras_wo_bn + params,
                    'weight_decay': 5e-4
                }, {
                    'params': paras_only_bn
                }],
                                           lr=conf.lr,
                                           momentum=conf.momentum)
            print(self.optimizer)

            if conf.resume is not None:
                self.start_epoch = self.load_state(conf.resume)
            else:
                self.start_epoch = 0

            print('optimizers generated')
            self.board_loss_every = len(self.train_loader[0]) // 10
            self.evaluate_every = len(self.train_loader[0]) // 5
            self.save_every = len(self.train_loader[0]) // 5
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                conf.eval_path)
        else:
            self.threshold = conf.threshold
예제 #15
0
    def __init__(self, conf, inference=False):
        print(conf)
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            print('prepare train loader..')
            self.loader, self.class_num = get_train_loader(conf)
            current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
            self.writer = SummaryWriter(str(conf.log_path / current_time))
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            self.lrscheduler = optim.lr_scheduler.ReduceLROnPlateau(
                self.optimizer, factor=0.1, patience=20, verbose=True)
            # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            # len(self.loader): number of batches?
            self.board_loss_every = len(self.loader) // 120
            self.evaluate_every = len(self.loader) // 40
            self.save_every = len(self.loader) // 40
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                self.loader.dataset.root.parent)
        else:
            self.threshold = conf.threshold
예제 #16
0
    pairs = lfw.read_pairs(os.path.expanduser(lfw_pairs))

    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(os.path.expanduser(lfw_dir), pairs)

    # print(paths)
    print('paths len:', len(paths))
    print('pairs len: ', len(actual_issame))

    embeddings = np.zeros([len(paths), 512])
    # arcface = ArcFace(classnum=10).to('cuda')
    # backbone = arcface.backbone
    # backbone.load_state_dict(torch.load('resnet50.pth'))

    mobileFacenet = MobileFaceNet(512).to('cuda')
    mobileFacenet.load_state_dict(torch.load('mobilefacenet.pth'))
    mobileFacenet.eval()

    with torch.no_grad():
        for idx, path in enumerate(paths):
            print('process image no:', idx)
            img = Image.open(path)
            embedding = get_embedding(mobileFacenet,
                                      img,
                                      tta=False,
                                      device='cuda')
            embeddings[idx] = embedding.cpu().numpy()

    # np.save('temp2.npy', embeddings)
    # embeddings = np.load('temp.npy')
예제 #17
0
    def __init__(self, conf, inference=False, transfer=0, ext='final'):
        pprint.pprint(conf)
        self.conf = conf
        if conf.arch == "mobile":
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        elif conf.arch == "ir_se":
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.arch).to(conf.device)
            print('{}_{} model generated'.format(conf.arch, conf.net_depth))
        elif conf.arch == "resnet50":
            self.model = ResNet(embedding_size=512,
                                arch=conf.arch).to(conf.device)
            print("resnet model {} generated".format(conf.arch))
        else:
            exit("model not supported yet!")

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            tmp_idx = ext.rfind('_')  # find the last '_' to replace it by '/'
            self.ext = '/' + ext[:tmp_idx] + '/' + ext[tmp_idx + 1:]
            self.writer = SummaryWriter(str(conf.log_path) + self.ext)
            self.step = 0

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if transfer == 3:
                self.optimizer = optim.Adam(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr)  # , momentum = conf.momentum)
            elif transfer == 2:
                self.optimizer = optim.Adam(
                    [
                        {
                            'params': paras_wo_bn + [self.head.kernel],
                            'weight_decay': 4e-4
                        },
                    ],
                    lr=conf.lr)  # , momentum = conf.momentum)
            elif transfer == 1:
                self.optimizer = optim.Adam(
                    [
                        {
                            'params': [self.head.kernel],
                            'weight_decay': 4e-4
                        },
                    ],
                    lr=conf.lr)  # , momentum = conf.momentum)
            else:
                """
                self.optimizer = optim.SGD([
                                    {'params': paras_wo_bn[:-1], 'weight_decay': 4e-5},
                                    {'params': [paras_wo_bn[-1]] + [self.head.kernel], 'weight_decay': 4e-4},
                                    {'params': paras_only_bn}
                                ], lr = conf.lr, momentum = conf.momentum)
                """
                self.optimizer = optim.Adam(list(self.model.parameters()) +
                                            list(self.head.parameters()),
                                            lr=conf.lr)
            print(self.optimizer)
            # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.save_freq = len(self.loader)  #//5 # originally, 100
            self.evaluate_every = len(self.loader)  #//5 # originally, 10
            self.save_every = len(self.loader)  #//2 # originally, 5
            # self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(self.loader.dataset.root.parent)
            # self.val_112, self.val_112_issame = get_val_pair(self.loader.dataset.root.parent, 'val_112')
        else:
            self.threshold = conf.threshold

        self.train_losses = []
        self.train_counter = []
        self.test_losses = []
        self.test_accuracy = []
        self.test_counter = []
예제 #18
0
    def __init__(self, conf, inference=False):
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            self.growup = GrowUP().to(conf.device)
            self.discriminator = Discriminator().to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:

            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)
            if conf.discriminator:
                self.child_loader, self.adult_loader = get_train_loader_d(conf)

            os.makedirs(conf.log_path, exist_ok=True)
            self.writer = SummaryWriter(conf.log_path)
            self.step = 0

            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            # Will not use anymore
            if conf.use_dp:
                self.model = nn.DataParallel(self.model)
                self.head = nn.DataParallel(self.head)

            print(self.class_num)
            print(conf)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            if conf.discriminator:
                self.optimizer_g = optim.Adam(self.growup.parameters(),
                                              lr=1e-4,
                                              betas=(0.5, 0.999))
                self.optimizer_g2 = optim.Adam(self.growup.parameters(),
                                               lr=1e-4,
                                               betas=(0.5, 0.999))
                self.optimizer_d = optim.Adam(self.discriminator.parameters(),
                                              lr=1e-4,
                                              betas=(0.5, 0.999))
                self.optimizer2 = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)

            if conf.finetune_model_path is not None:
                self.optimizer = optim.SGD([{
                    'params': paras_wo_bn,
                    'weight_decay': 5e-4
                }, {
                    'params': paras_only_bn
                }],
                                           lr=conf.lr,
                                           momentum=conf.momentum)
            print('optimizers generated')

            self.board_loss_every = len(self.loader) // 100
            self.evaluate_every = len(self.loader) // 2
            self.save_every = len(self.loader)

            dataset_root = "/home/nas1_userD/yonggyu/Face_dataset/face_emore"
            self.lfw = np.load(
                os.path.join(dataset_root,
                             "lfw_align_112_list.npy")).astype(np.float32)
            self.lfw_issame = np.load(
                os.path.join(dataset_root, "lfw_align_112_label.npy"))
            self.fgnetc = np.load(
                os.path.join(dataset_root,
                             "FGNET_new_align_list.npy")).astype(np.float32)
            self.fgnetc_issame = np.load(
                os.path.join(dataset_root, "FGNET_new_align_label.npy"))
        else:
            # Will not use anymore
            # self.model = nn.DataParallel(self.model)
            self.threshold = conf.threshold
예제 #19
0
    def __init__(self, conf, args, inference=False):
        print(conf)
        self.local_rank = args.local_rank
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).cuda()
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).cuda()

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            #[self.model, self.head], self.optimizer = amp.initialize([self.model, self.head], self.optimizer, opt_level='O1')
            [self.model, self.head
             ], self.optimizer = amp.initialize([self.model, self.head],
                                                self.optimizer,
                                                opt_level='O3',
                                                keep_batchnorm_fp32=True)
            print(self.optimizer, args.local_rank)
            self.head = DistributedDataParallel(self.head)
            self.model = DistributedDataParallel(self.model)
            #self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[args.local_rank])
            #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.board_loss_every = len(self.loader) // 100
            self.evaluate_every = len(self.loader) // 10
            self.save_every = len(self.loader) // 5
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                self.loader.dataset.root.parent)
        else:
            self.threshold = conf.threshold
예제 #20
0
    def __init__(self,
                 conf,
                 inference=False,
                 train_transforms=None,
                 val_transforms=None,
                 train_loader=None):
        print(conf)
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:

            self.milestones = conf.milestones
            if train_loader is None:
                self.loader, self.class_num = get_train_loader(
                    conf, train_transforms)
            else:
                self.loader = train_loader
                self.class_num = conf.num_classes

            if conf.net_mode in ['ir', 'ir_se']:
                self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                      conf.net_mode,
                                      conf.use_gap).to(conf.device)
            else:
                import json
                self.model = MetricNet(model_name=conf.net_mode,
                                       pooling=conf.pooling,
                                       use_fc=True,
                                       fc_dim=conf.embedding_size,
                                       dropout=conf.last_fc_dropout,
                                       pretrained=conf.pretrained,
                                       class_num=self.class_num).to(
                                           conf.device)
                print('{}_{} model generated'.format(conf.net_mode,
                                                     conf.net_depth))

            if conf.use_mobilfacenet or conf.net_mode in ['ir', 'ir_se']:
                self.head = Arcface(embedding_size=conf.embedding_size,
                                    classnum=self.class_num).to(conf.device)
            else:
                if conf.loss_module == 'arcface':
                    self.head = ArcMarginProduct(self.model.final_in_features,
                                                 self.class_num,
                                                 s=conf.s,
                                                 m=conf.margin,
                                                 easy_margin=False,
                                                 ls_eps=conf.ls_eps).to(
                                                     conf.device)
                elif conf.loss_module == 'cosface':
                    self.head = AddMarginProduct(self.model.final_in_features,
                                                 self.class_num,
                                                 s=conf.s,
                                                 m=conf.margin).to(conf.device)
                elif conf.loss_module == 'adacos':
                    self.head = AdaCos(self.model.final_in_features,
                                       self.class_num,
                                       m=conf.margin,
                                       theta_zero=conf.theta_zero).to(
                                           conf.device)
                else:
                    self.head = nn.Linear(self.model.final_in_features,
                                          self.class_num).to(conf.device)

            print('two model heads generated')
            if conf.ft_model_path:
                self.load_ft_model(conf.ft_model_path, not conf.no_strict)
            elif conf.restore_suffix:
                self.load_state(conf,
                                conf.restore_suffix,
                                from_save_folder=False,
                                model_only=False)

            if not inference:

                self.writer = SummaryWriter(conf.log_path)
                self.step = 0

                paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

                if conf.use_mobilfacenet:
                    params = [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }]
                    wd = 4e-5
                else:
                    # if conf.net_mode in ['ir', 'ir_se']:
                    # params = [
                    #     {'params': paras_wo_bn + [self.head.weight], 'weight_decay': 5e-4},
                    #     {'params': paras_only_bn}
                    # ]
                    params = [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }]
                    wd = 5e-4
                    # else:
                    #     params = self.model.parameters()
                    #     wd = conf.wd
                    #     # params = [
                    #     #     {'params': paras_wo_bn + [self.head.weight], 'weight_decay': conf.wd},  # 5e-4},
                    #     #     {'params': paras_only_bn}
                    #     # ]

                if conf.optimizer == 'sgd':
                    self.optimizer = optim.SGD(
                        params, lr=conf.lr,
                        momentum=conf.momentum)  # , weight_decay=wd)
                elif conf.optimizer == 'adam':
                    self.optimizer = optim.Adam(
                        params, lr=conf.lr)  # , weight_decay=wd)
                print(self.optimizer)
                #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

                print('optimizers generated')
                self.board_loss_every = len(self.loader) // 100
                self.evaluate_every = len(self.loader) // 10
                self.save_every = len(self.loader) // 5

                self.board_loss_every = 20
                self.evaluate_every = len(self.loader)
                self.save_every = len(self.loader)
                if conf.data_mode == 'common':
                    import json
                    val_img_dir_map = json.loads(conf.val_img_dirs)
                    self.val_dataloaders = {}
                    for val_name in val_img_dir_map:
                        val_img_dir = val_img_dir_map[val_name]
                        val_dataloader, common_val_issame = get_common_val_data(
                            val_img_dir,
                            conf.max_positive_cnt,
                            conf.val_batch_size,
                            conf.val_pin_memory,
                            conf.num_workers,
                            val_transforms=val_transforms,
                            use_pos=not conf.not_use_pos,
                            use_neg=not conf.not_use_neg,
                            val_smapling_type=conf.val_smapling_type,
                            use_keras_model=conf.use_val_left_right_check)
                        self.val_dataloaders[val_name] = [
                            val_dataloader, common_val_issame
                        ]
                elif conf.data_mode == 'dacon_landmark':

                    pass
                else:
                    self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                        self.loader.dataset.root.parent)
            else:
                self.threshold = conf.threshold
예제 #21
0
def main():
    model_path = './softmax_loss_checkpoints/'
    model = MobileFaceNet(conf.embedding_size)
    model = nn.DataParallel(model)
    checkpoint = torch.load(model_path)
    model.load_state_dict(checkpoint['net'])
예제 #22
0

from model import MobileFaceNet
import torch
from mtcnn import MTCNN


model = MobileFaceNet(512)

model.load_state_dict(torch.load('/home/ai/Desktop/project/pytorch-insightface/model_mobilefacenet.pth'))

print(model.state_dict())

예제 #23
0
    def __init__(self, conf, inference=False):
        print(conf)
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)
            print('class_num:', self.class_num)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            # if conf.data_mode == 'small_vgg':
            #     self.board_loss_every = len(self.loader)
            #     print('len(loader', len(self.loader))
            #     self.evaluate_every = len(self.loader)
            #     self.save_every = len(self.loader)
            #     # self.lfw, self.lfw_issame = get_val_data(conf, conf.smallvgg_folder)

            # else:
            #     self.board_loss_every = len(self.loader)

            #     self.evaluate_every = len(self.loader)//10
            #     self.save_every = len(self.loader)//5
            self.agedb_30, self.cfp_fp, self.lfw, self.kface, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame, self.kface_issame = get_val_data(
                conf, self.loader.dataset.root.parent)

        else:
            self.threshold = conf.threshold
예제 #24
0
    except Exception as err:
        print(err)

    # create model
    init_funcs = {
        1: lambda x: torch.nn.init.normal_(x, mean=0., std=1.),  # can be bias
        2: lambda x: torch.nn.init.xavier_normal_(x, gain=1.),  # can be weight
        3: lambda x: torch.nn.init.xavier_uniform_(x, gain=1.
                                                   ),  # can be conv1D filter
        4: lambda x: torch.nn.init.xavier_uniform_(x, gain=1.
                                                   ),  # can be conv2D filter
        "default": lambda x: torch.nn.init.constant(x, 1.),  # everything else
    }

    embedding_size = 512
    model = MobileFaceNet(embedding_size)

    init_all(model, init_funcs)

    if mode == 'test':
        load_model(model_name, model)

    if cuda:
        model = model.to(device)

    if mode == 'train':
        # define loss function
        # loss_fn = nn.CrossEntropyLoss()
        # if cuda:
        #     loss_fn = loss_fn.cuda()
    def __init__(self, conf, inference=False, transfer=0):
        pprint.pprint(conf)
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                if transfer == 3:
                    self.optimizer = optim.SGD(
                        [{
                            'params': [paras_wo_bn[-1]] + [self.head.kernel],
                            'weight_decay': 4e-4
                        }, {
                            'params': paras_only_bn
                        }],
                        lr=conf.lr,
                        momentum=conf.momentum)
                elif transfer == 2:
                    self.optimizer = optim.SGD([
                        {
                            'params': [paras_wo_bn[-1]] + [self.head.kernel],
                            'weight_decay': 4e-4
                        },
                    ],
                                               lr=conf.lr,
                                               momentum=conf.momentum)
                elif transfer == 1:
                    self.optimizer = optim.SGD([
                        {
                            'params': [self.head.kernel],
                            'weight_decay': 4e-4
                        },
                    ],
                                               lr=conf.lr,
                                               momentum=conf.momentum)
                else:
                    self.optimizer = optim.SGD(
                        [{
                            'params': paras_wo_bn[:-1],
                            'weight_decay': 4e-5
                        }, {
                            'params': [paras_wo_bn[-1]] + [self.head.kernel],
                            'weight_decay': 4e-4
                        }, {
                            'params': paras_only_bn
                        }],
                        lr=conf.lr,
                        momentum=conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            print(self.optimizer)
            # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.board_loss_every = len(self.loader) // 5  # originally, 100
            self.evaluate_every = len(self.loader) // 5  # originally, 10
            self.save_every = len(self.loader) // 2  # originally, 5
            # self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(self.loader.dataset.root.parent)
            self.val_112, self.val_112_issame = get_val_pair(
                self.loader.dataset.root.parent, 'val_112')
        else:
            self.threshold = conf.threshold
예제 #26
0
    def __init__(self, conf, inference=False):
        print(conf)
        if conf.use_mobilfacenet:
            self.model = MobileFaceNet(conf.embedding_size).to(conf.device)
            print('MobileFaceNet model generated')
        elif conf.use_shufflenetV2:
            #self.model = ShuffleNetV2().to(conf.device)
            self.model = model.shufflenet().to(conf.device)
            print("ShufflenetV2 model generated")
        else:
            self.model = Backbone(conf.net_depth, conf.drop_ratio,
                                  conf.net_mode).to(conf.device)
            print('{}_{} model generated'.format(conf.net_mode,
                                                 conf.net_depth))

        if not inference:
            self.milestones = conf.milestones
            self.loader, self.class_num = get_train_loader(conf)

            self.writer = SummaryWriter(conf.log_path)
            self.step = 0
            self.head = Arcface(embedding_size=conf.embedding_size,
                                classnum=self.class_num).to(conf.device)

            print('two model heads generated')

            paras_only_bn, paras_wo_bn = separate_bn_paras(self.model)

            if conf.use_mobilfacenet:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn[:-1],
                        'weight_decay': 4e-5
                    }, {
                        'params': [paras_wo_bn[-1]] + [self.head.kernel],
                        'weight_decay': 4e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr,
                    momentum=conf.momentum)
            # elif conf.use_shufflenetV2:
            #     self.optimizer = optim.SGD([
            #                         {'params': paras_wo_bn[:-1], 'weight_decay': 4e-5},
            #                         {'params': [paras_wo_bn[-1]] + [self.head.kernel], 'weight_decay': 4e-4},
            #                         {'params': paras_only_bn}
            #                     ], lr = conf.lr*10, momentum = conf.momentum)
            else:
                self.optimizer = optim.SGD(
                    [{
                        'params': paras_wo_bn + [self.head.kernel],
                        'weight_decay': 5e-4
                    }, {
                        'params': paras_only_bn
                    }],
                    lr=conf.lr * 10,
                    momentum=conf.momentum)
            print(self.optimizer)
            #             self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True)

            print('optimizers generated')
            self.board_loss_every = len(self.loader) // 100
            self.evaluate_every = len(self.loader) // 10
            self.save_every = len(self.loader) // 5
            self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(
                '/root/NewDisk/daxing2/WW/data/faces_vgg_112x112/'
            )  #self.loader.dataset.root.parent
        else:
            self.threshold = conf.threshold