예제 #1
0
def main():

    if not (os.path.isdir("logs")):
        os.makedirs("logs")

    working_dir = "logs/" + args.dir
    if not (os.path.isdir(working_dir)):
        raise NameError(args.dir + " does not exist in dir logs")

    print(args)

    env = QubeSwingupEnv(use_simulator=args.sim, batch_size= 2048*4)

    num_inputs = env.observation_space.shape[0]
    num_actions = NUMBER_OF_ACTIONS
    print('state size:', num_inputs)
    print('action size:', num_actions)

    net = QNet(num_inputs, num_actions) if not args.new_net else QNet_more_layers(num_inputs, num_actions)
    net.load_state_dict(torch.load(working_dir + "/best_model.pth", map_location=torch.device(device)))
    net.to(device)
    net.eval()
    running_score = 0
    epsilon = 1.0
    steps = 0
    beta = beta_start
    loss = 0

    best_running_score = -1000

    for e in range(1):
        done = False

        score = 0
        state = env.reset()
        state = torch.Tensor(state).to(device)
        state = state.unsqueeze(0)
        
        while not done:
            steps += 1
            action = get_continuous_action(get_action(state, net))
            if np.abs(state[0][1].item()) < deg2rad(25):
                action = pd_control_policy(state.cpu().numpy()[0])[0]
            next_state, reward, done, info = env.step(action)
            reward = give_me_reward(info["alpha"], info["theta"])
            if args.sim: env.render()
            reward = give_me_reward(info["alpha"], info["theta"])
            if done:
                print(info)
                print("theta:" , info["theta"] * 180/np.pi)
            next_state = torch.Tensor(next_state).to(device)
            next_state = next_state.unsqueeze(0)

            score += reward
            state = next_state

        running_score = 0.99 * running_score + 0.01 * score
        print('{} episode | running_score: {:.2f} | score: {:.2f} | steps: {} '.format(e, running_score, score, steps))
    env.close()
class Agent():
    def __init__(self, state_size, action_size, seed):
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        self.qnetwork_local = QNet(state_size, action_size, seed).to(device)
        self.qnetwork_target = QNet(state_size, action_size, seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay Memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        self.memory.add(state, action, reward, next_state, done)

        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.1):
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        states, actions, rewards, next_states, dones = experiences
        
        # For normal DQN
        #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)

        # For double DQN
        Q_targets_next = np.argmax(self.qnetwork_local(next_states).detach(),axis=-1).unsqueeze(1)
        Q_targets_next = self.qnetwork_target(next_states).gather(1, Q_targets_next)
        
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        loss = F.mse_loss(Q_expected, Q_targets)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
예제 #3
0
def main():
    env = gym.make(args.env_name)
    env.seed(500)
    torch.manual_seed(500)

    img_shape = env.observation_space.shape
    num_actions = 3
    print('image size:', img_shape)
    print('action size:', num_actions)

    net = QNet(num_actions)
    net.load_state_dict(torch.load(args.save_path + 'model.pth'))

    net.to(device)
    net.eval()

    epsilon = 0

    for e in range(5):
        done = False

        score = 0
        state = env.reset()

        state = pre_process(state)
        state = torch.Tensor(state).to(device)
        history = torch.stack((state, state, state, state))

        for i in range(3):
            action = env.action_space.sample()
            state, reward, done, info = env.step(action)
            state = pre_process(state)
            state = torch.Tensor(state).to(device)
            state = state.unsqueeze(0)
            history = torch.cat((state, history[:-1]), dim=0)

        while not done:
            if args.render:
                env.render()

            steps += 1
            qvalue = net(history.unsqueeze(0))
            action = get_action(0, qvalue, num_actions)

            next_state, reward, done, info = env.step(action + 1)

            next_state = pre_process(next_state)
            next_state = torch.Tensor(next_state).to(device)
            next_state = next_state.unsqueeze(0)
            next_history = torch.cat((next_state, history[:-1]), dim=0)

            score += reward
            history = next_history

        print('{} episode | score: {:.2f}'.format(e, score))
def main():
    env = gym.make(args.env_name)
    env.seed(500)
    torch.manual_seed(500)

    num_inputs = env.observation_space.shape[0]
    num_actions = env.action_space.n
    print('state size:', num_inputs)
    print('action size:', num_actions)

    net = QNet(num_inputs, num_actions)
    net.load_state_dict(torch.load(args.save_path + 'model.pth'))

    net.to(device)
    net.eval()
    running_score = 0
    steps = 0

    for e in range(5):
        done = False

        score = 0
        state = env.reset()
        state = torch.Tensor(state).to(device)
        state = state.unsqueeze(0)

        while not done:
            env.render()

            steps += 1
            qvalue = net(state)
            action = get_action(qvalue)
            next_state, reward, done, _ = env.step(action)

            next_state = torch.Tensor(next_state).to(device)
            next_state = next_state.unsqueeze(0)

            score += reward
            state = next_state

        print('{} episode | score: {:.2f}'.format(e, score))
예제 #5
0
    def __init__(self, run):
        self.run = run
        ckpt_dir = os.path.join(run, 'ckpt')    
        ckpts = glob2.glob(os.path.join(ckpt_dir, '*.pth'))
        assert ckpts, "No checkpoints to resume from!"

        def get_epoch(ckpt_url):
            s = re.findall("ckpt_e(\d+).pth", ckpt_url)
            epoch = int(s[0]) if s else -1
            return epoch, ckpt_url

        start_epoch, ckpt = max(get_epoch(c) for c in ckpts)
        print('Checkpoint:', ckpt)
        
        if torch.cuda.is_available():
           model = QNet().cuda()
        else:
           model = QNet()
        
        ckpt = torch.load(ckpt)
        model.load_state_dict(ckpt['model'])
        model.eval()
        
        self.model = model
예제 #6
0
class Agent():
    def __init__(self, args, state_size, action_size, seed):
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        self.per = args.per
        self.dueling = args.dueling
        self.buffer_size = args.buffer_size
        self.batch_size = args.batch_size
        self.gamma = args.gamma
        self.tau = args.tau
        self.lr = args.learning_rate
        self.update_freq = args.update_every
        # Q-Network
        if self.dueling:
            self.local_qnet = DuelingQNet(state_size, action_size,
                                          seed).to(device)
            self.target_qnet = DuelingQNet(state_size, action_size,
                                           seed).to(device)
        else:
            self.local_qnet = QNet(state_size, action_size, seed).to(device)
            self.target_qnet = QNet(state_size, action_size, seed).to(device)

        self.optimizer = optim.Adam(self.local_qnet.parameters(), lr=self.lr)

        # Replay Memory
        if self.per:
            self.memory = PrioritizedReplayMemory(args, self.buffer_size)
        else:
            self.memory = ReplayMemory(action_size, self.buffer_size,
                                       self.batch_size, seed)
        self.t_step = 0  # init time step for updating every UPDATE_EVERY steps

    def step(self, state, action, reward, next_state, done):
        if self.per:
            self.memory.append(state, action, reward, next_state, done)
        else:
            self.memory.add(state, action, reward, next_state,
                            done)  # save experience to replay memory.
        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % self.update_freq
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > self.batch_size:
                if self.dueling:
                    self.learn_DDQN(self.gamma)
                else:
                    self.learn(self.gamma)

    def act(self, state, eps=0.):
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.local_qnet.eval()
        with torch.no_grad():
            action_values = self.local_qnet(state)
        self.local_qnet.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, gamma):
        if self.per:
            idxs, states, actions, rewards, next_states, dones, weights = self.memory.sample(
                self.batch_size)
        else:
            states, actions, rewards, next_states, dones = self.memory.sample()
        # Get max predicted Q values for next states from target model
        Q_targets_next = self.target_qnet(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        Q_expected = self.local_qnet(states).gather(1, actions)

        # Compute loss - element-wise mean squared error
        # Now loss is a Tensor of shape (1,)
        # loss.item() gets the scalar value held in the loss.
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize loss
        self.optimizer.zero_grad()
        if self.per:
            (weights * loss).mean().backward(
            )  # Backpropagate importance-weighted minibatch loss
        else:
            loss.backward()
        self.optimizer.step()

        if self.per:
            errors = np.abs((Q_expected - Q_targets).detach().cpu().numpy())
            self.memory.update_priorities(idxs, errors)
        # Update target network
        self.soft_update(self.local_qnet, self.target_qnet, self.tau)

    def learn_DDQN(self, gamma):
        if self.per:
            idxs, states, actions, rewards, next_states, dones, weights = self.memory.sample(
                self.batch_size)
        else:
            states, actions, rewards, next_states, dones = self.memory.sample()
        # Get index of maximum value for next state from Q_expected
        Q_argmax = self.local_qnet(next_states).detach()
        _, a_prime = Q_argmax.max(1)
        # Get max predicted Q values for next states from target model
        Q_targets_next = self.target_qnet(next_states).detach().gather(
            1, a_prime.unsqueeze(1))
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Get expected Q values from local model
        Q_expected = self.local_qnet(states).gather(1, actions)

        # Compute loss
        # Now loss is a Tensor of shape (1,)
        # loss.item() gets the scalar value held in the loss.
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize loss
        self.optimizer.zero_grad()
        if self.per:
            (weights * loss).mean().backward(
            )  # Backpropagate importance-weighted minibatch loss
        else:
            loss.backward()
        self.optimizer.step()

        if self.per:
            errors = np.abs((Q_expected - Q_targets).detach().cpu().numpy())
            self.memory.update_priorities(idxs, errors)
        # Update target network
        self.soft_update(self.local_qnet, self.target_qnet, self.tau)

    def soft_update(self, local_model, target_model, tau):
        # θ_target = τ*θ_local + (1 - τ)*θ_target
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
예제 #7
0
    else:
        input = torch.from_numpy(state).to(device, torch.float32).unsqueeze(0)
        score = net(input)
        action = score.max(dim=1)[1].to(torch.int64).item()
    return action


# Build environment
env = make_atari('PongNoFrameskip-v4', stack=2)
env = wrap_pytorch(env)
env = gym.wrappers.Monitor(env,
                           directory='./movie',
                           force=True,
                           video_callable=lambda x: True)
number_actions = env.action_space.n

# Separate target net & policy net
input_shape = env.reset().shape
net = QNet(input_shape, number_actions)
net.load_state_dict(torch.load(model))
net.eval().to(device)

for episode in range(10):
    state = env.reset()
    done = False
    while not done:
        # env.render()
        action = select_action(state, number_actions=number_actions)
        next_state, reward, done, _ = env.step(action)
        state = next_state
env.close()
예제 #8
0
    return loss


# Build environment
env = make_atari('PongNoFrameskip-v4', stack=2)
env = wrap_pytorch(env)

number_actions = env.action_space.n
replay_buffer = ReplayBuffer(replay_memory_size)

# Separate target net & policy net
input_shape = env.reset().shape
current_net = QNet(input_shape, number_actions).to(device)
target_net = QNet(input_shape, number_actions).to(device)  # with older weights
target_net.load_state_dict(current_net.state_dict())
target_net.eval()
optimizer = opt_algorithm(current_net.parameters(), lr=learning_rate)

n_episode = 1
episode_return = 0
best_return = 0
returns = []
state = env.reset()
for i in count():
    # env.render()
    eps = get_epsilon(i)
    action = select_action(state,
                           current_net,
                           eps,
                           number_action=number_actions)
    next_state, reward, done, _ = env.step(action)
예제 #9
0
class Agent():
    """Agent definition for interacting with environment"""
    def __init__(self, state_size, action_size, seed):
        """
        Params
        ======
            state_size (int): state dimension
            action_size (int): action dimension
            seed (int): random seed for replicating experiment
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        self.QNet_local = QNet(state_size, action_size, seed).to(device)
        self.QNet_target = QNet(state_size, action_size, seed).to(device)
        self.optimizer = optim.Adam(self.QNet_local.parameters(), lr=LR)

        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Add current experience to replay memory
        self.memory.add(state, action, reward, next_state, done)

        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Get favored action

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.QNet_local.eval()
        with torch.no_grad():
            action_values = self.QNet_local(state)
        self.QNet_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Perform learning on experiences

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        Q_targets_next = self.QNet_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        Q_expected = self.QNet_local(states).gather(1, actions)

        loss = F.mse_loss(Q_expected, Q_targets)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.soft_update(self.QNet_local, self.QNet_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """ θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): model to copy weights from
            target_model (PyTorch model): copy to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)