예제 #1
0
def main(args):
    # set the necessary list
    train_list = pd.read_csv(args.train_list, header=None)
    val_list = pd.read_csv(args.val_list, header=None)

    # set the necessary directories
    trainimg_dir = args.trainimg_dir
    trainmsk_dir = args.trainmsk_dir
    valimg_dir = args.valimg_dir
    valmsk_dir = args.valmsk_dir

    train_gen = data_gen_small(
        trainimg_dir,
        trainmsk_dir,
        train_list,
        args.batch_size,
        [args.input_shape[0], args.input_shape[1]],
        args.n_labels,
    )
    val_gen = data_gen_small(
        valimg_dir,
        valmsk_dir,
        val_list,
        args.batch_size,
        [args.input_shape[0], args.input_shape[1]],
        args.n_labels,
    )

    model = SegNet(args.n_labels, args.kernel, args.pool_size,
                   args.output_mode)
    model.build(input_shape=(1, 256, 256, 3))
    print(model.summary())

    model.compile(loss=args.loss,
                  optimizer=args.optimizer,
                  metrics=["accuracy"])
    model.fit_generator(train_gen,
                        steps_per_epoch=args.epoch_steps,
                        epochs=args.n_epochs,
                        validation_data=val_gen,
                        validation_steps=args.val_steps,
                        callbacks=[TensorBoard(log_dir="./run")])
    model.save_weights(args.save_dir + str(args.n_epochs) + ".hdf5")
    print("sava weight done..")
예제 #2
0
x_test = np.asarray(testImages) / 255.0
x_test = np.delete(x_test, len(x_test) - 1, axis=0)

y_train = sc.fit_transform(np.asarray(controls))

# Prepare model for training
model = SegNet((IMG_H, IMG_W))

model.compile(optimizer='adam', loss='mean_squared_error')

model.fit(x_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE)

if not os.path.exists('models'):
    os.mkdir('models')

model.save_weights('models/res.h5', save_format='h5')

# Predict on testing dataset
predictions = model.predict(x_test)
predictions = sc.inverse_transform(predictions)
print(predictions)

# Show results and compare
plt.plot(testControls, color='blue', label=f'Real steering')
plt.plot(predictions, color='red', label=f'Predicted steering')
plt.title(f"Steering Angle Prediction")
plt.xlabel('Frame')
plt.ylabel('Steering Angle')
plt.legend()

plt.show()
예제 #3
0
def main():

    # Parse arguments.
    parser = argparse.ArgumentParser()
    kwargs = {
        'type': int,
        'default': 100,
        'help': 'The number of times of learning. default: 100'
    }
    parser.add_argument('-e', '--epochs', **kwargs)
    kwargs = {
        'type': int,
        'default': 10,
        'help': 'The frequency of saving model. default: 10'
    }
    parser.add_argument('-c', '--checkpoint_interval', **kwargs)
    kwargs = {
        'type': int,
        'default': 1,
        'help': 'The number of samples contained per mini batch. default: 1'
    }
    parser.add_argument('-b', '--batch_size', **kwargs)
    kwargs = {
        'default':
        False,
        'action':
        'store_true',
        'help':
        'Whether store all data to GPU. If not specified this option, use both CPU memory and GPU memory.'
    }
    parser.add_argument('--onmemory', **kwargs)
    args = parser.parse_args()

    # Prepare training data.
    dataset = np.load('./temp/dataset.npz')
    train_x = dataset['train_x']
    train_y = dataset['train_y']
    test_x = dataset['test_x']
    test_y = dataset['test_y']

    # Prepare tensorflow.
    config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
    session = tf.Session(config=config)
    keras.backend.tensorflow_backend.set_session(session)

    # Prepare model.
    model = SegNet(shape=(360, 480, 3))
    model.compile(loss='binary_crossentropy',
                  optimizer='adadelta',
                  metrics=['accuracy'])

    # Training.
    callbacks = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    directory = f'./logs/{timestamp}/'
    os.makedirs(directory, exist_ok=True)
    callbacks.append(keras.callbacks.TensorBoard(log_dir=directory))

    filename = 'model-{epoch:04d}.h5'
    directory = f'./temp/{timestamp}/'
    os.makedirs(directory, exist_ok=True)
    callbacks.append(
        keras.callbacks.ModelCheckpoint(filepath=f'{directory}{filename}',
                                        monitor='val_loss',
                                        verbose=0,
                                        save_best_only=False,
                                        save_weights_only=False,
                                        mode='auto',
                                        period=args.checkpoint_interval))

    model.save_weights(f'{directory}{filename}'.format(epoch=0))

    if args.onmemory:
        model.fit(x=train_x,
                  y=train_y,
                  validation_data=(test_x, test_y),
                  epochs=args.epochs,
                  batch_size=args.batch_size,
                  class_weight='balanced',
                  shuffle=True,
                  verbose=1,
                  callbacks=callbacks)
    else:

        class Generator(keras.utils.Sequence):
            def __init__(self, x, y, batch_size, shuffle):
                self.x = x
                self.y = y
                self.batch_size = batch_size
                self.indices = np.arange(len(self.x))
                self.shuffle = shuffle
                assert len(self.x) == len(self.y)
                assert len(self.x) % self.batch_size == 0

            def __getitem__(self, index):
                i = index * self.batch_size
                indices = self.indices[i:i + self.batch_size]
                x = self.x[indices]
                y = self.y[indices]
                return x, y

            def __len__(self):
                return len(self.x) // self.batch_size

            def on_epoch_end(self):
                if self.shuffle:
                    self.indices = np.random.permutation(self.indices)

        model.fit_generator(generator=Generator(train_x, train_y,
                                                args.batch_size, True),
                            validation_data=Generator(test_x, test_y,
                                                      args.batch_size, False),
                            epochs=args.epochs,
                            class_weight='balanced',
                            shuffle=True,
                            verbose=1,
                            callbacks=callbacks)