예제 #1
0
def train(args):
    train_iter, dev_iter = data_processor.load_data(args) # 将数据分为训练集和验证集
    print('加载数据完成')
    model = TextRNN(args)
    Cuda = torch.cuda.is_available()
    if Cuda and args.cuda: 
        model.cuda()
    """
    Q5:
        Please give optimizer here
		
		Add lr_scheduler to adjust learning rate.
    """
    optimizer = torch.optim.Adam(model.parameters(), lr = args.lr)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.8)
    steps = 0
    best_acc = 0
    last_step = 0
    model.train()
    for epoch in range(1, args.epoch + 1):
        for batch in train_iter:
            feature, target = batch.text, batch.label
            
            # t_()函数表示将(max_len, batch_size)转置为(batch_size, max_len)
            with torch.no_grad():
                 feature.t_(), target.sub_(1) # target减去1
           
            if args.cuda and Cuda:
                feature, target = feature.cuda(), target.cuda()
            optimizer.zero_grad()
            logits = model(feature)
            loss = F.cross_entropy(logits, target)
            loss.backward()
            optimizer.step()
            steps += 1
            if steps % args.log_interval == 0:
                # torch.max(logits, 1)函数:返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)
                corrects = (torch.max(logits, 1)[1] == target).sum()
                train_acc = 100.0 * corrects / batch.batch_size
                sys.stdout.write(
                    '\rBatch[{}] - loss: {:.6f}  acc: {:.4f}%({}/{})'.format(steps,
                                                                             loss.item(),
                                                                             train_acc,
                                                                             corrects,
                                                                             batch.batch_size))
            if steps % args.test_interval == 0:
                dev_acc = eval(dev_iter, model, args)
                if dev_acc > best_acc:
                    best_acc = dev_acc
                    last_step = steps
                    if args.save_best:
                        print('Saving best model, acc: {:.4f}%\n'.format(best_acc))
                        save(model, args.save_dir, 'best', steps)
                else:
                    scheduler.step()
                    print('lr decayed to {}'.format(optimizer.state_dict()['param_groups'][0]['lr']))
                    if steps - last_step >= args.early_stopping:
                        print('\nearly stop by {} steps, acc: {:.4f}%'.format(args.early_stopping, best_acc))
                        raise KeyboardInterrupt
def train(args):
    train_iter, dev_iter = data_processor.load_data(args)  # 将数据分为训练集和验证集
    print('加载数据完成')
    model = TextRNN(args)
    if args.cuda: model.cuda()
    """
    Q5:
        Please give optimizer here
    """
    optimizer = torch.optim.Adam(model.parameters())
    steps = 0
    best_acc = 0
    last_step = 0
    model.train()
    for epoch in range(1, args.epoch + 1):
        for batch in train_iter:
            feature, target = batch.text, batch.label

            # t_()函数表示将(max_len, batch_size)转置为(batch_size, max_len)
            with torch.no_grad():
                #feature.t_()
                target.sub_(1)  # target减去1
                #print(feature.shape)

            if args.cuda:
                feature, target = feature.cuda(), target.cuda()
            optimizer.zero_grad()
            logits = model(feature)
            #print(logits.shape)
            loss = F.cross_entropy(logits, target)
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
            optimizer.step()
            steps += 1
            if steps % args.log_interval == 0:
                # torch.max(logits, 1)函数:返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)
                corrects = (torch.max(logits, 1)[1] == target).sum()
                train_acc = 100.0 * corrects / batch.batch_size
                sys.stdout.write(
                    '\rBatch[{}] - loss: {:.6f}  acc: {:.4f}%({}/{})'.format(
                        steps, loss.item(), train_acc, corrects,
                        batch.batch_size))
            if steps % args.test_interval == 0:
                dev_acc = eval(dev_iter, model, args)
                if dev_acc > best_acc:
                    best_acc = dev_acc
                    last_step = steps
                    if args.save_best:
                        print('Saving best model, acc: {:.4f}%\n'.format(
                            best_acc))
                        save(model, args.save_dir, 'best', steps)
                else:
                    if steps - last_step >= args.early_stopping:
                        print('\nearly stop by {} steps, acc: {:.4f}%'.format(
                            args.early_stopping, best_acc))
                        raise KeyboardInterrupt