from math import pi from starflow.utils import ListUnion from bson import SON from model_categories import MODEL_CATEGORIES MODELS = ListUnion(MODEL_CATEGORIES.values()) NUM_IMAGES = 20 USE_CANONICAL = True NSEG = 20 base_images = [SON([('model_ids',[m]), ('num_images',NUM_IMAGES), ('use_canonical',USE_CANONICAL), ('generator','renderman'), ('selection','random'), ('ty',SON([('$gt',-.6),('$lt',.6)])), ('tz',SON([('$gt',-.6),('$lt',.6)])), ('ryz',SON([('$gt',2*pi*(ind % NSEG)/NSEG),('$lt',2*pi*((ind % NSEG) + 1)/NSEG)])) ]) for (ind,m) in enumerate(MODELS)] import copy imagesets = [] #gray background for m in base_images:
from starflow.utils import ListUnion import copy from bson import SON from model_categories import MODEL_CATEGORIES as CAT all_models = ListUnion(CAT.values()) extraction = SON([ ('transform_average',SON([('transform_name','translation'),('percentile',[73,90,99])])), ('query',SON([('image.model_id',SON([('$in',all_models)])), ('image.bg_id','gray.tdl'), ('image.tx',SON([('$exists',False)])), ('image.s',SON([('$exists',False)])), ('image.rxy',SON([('$exists',False)])), ('image.rxz',SON([('$exists',False)])), ('$or',[SON([('image.ty',SON([('$exists',True)])),('image.tz',SON([('$exists',True)]))]), SON([('image.ryz',SON([('$exists',True)]))])]) ])) ]) config = { 'extractions' : [extraction] }