예제 #1
0
    def test_dcgan(self):
        # dcgan is flaky on some seeds, see:
        # https://github.com/ProjectToffee/onnx/pull/70
        torch.manual_seed(1)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(1)

        netD = dcgan._netD(1)
        netD.apply(dcgan.weights_init)
        input = Variable(torch.randn(BATCH_SIZE, 3, dcgan.imgsz, dcgan.imgsz))
        self.run_model_test(netD,
                            train=False,
                            batch_size=BATCH_SIZE,
                            input=input)

        netG = dcgan._netG(1)
        netG.apply(dcgan.weights_init)
        state_dict = model_zoo.load_url(model_urls['dcgan_b'], progress=False)
        # state_dict = model_zoo.load_url(model_urls['dcgan_f'], progress=False)
        noise = Variable(torch.randn(BATCH_SIZE, dcgan.nz, 1, 1).normal_(0, 1))
        self.run_model_test(netG,
                            train=False,
                            batch_size=BATCH_SIZE,
                            input=noise,
                            state_dict=state_dict,
                            rtol=1e-2,
                            atol=1e-6)
예제 #2
0
    def test_dcgan(self):
        # note, could have more than 1 gpu
        netG = _netG(1)
        netG.apply(weights_init)
        netD = _netD(1)
        netD.apply(weights_init)

        input = torch.Tensor(bsz, 3, imgsz, imgsz)
        noise = torch.Tensor(bsz, nz, 1, 1)
        fixed_noise = torch.Tensor(bsz, nz, 1, 1).normal_(0, 1)

        fixed_noise = Variable(fixed_noise)

        netD.zero_grad()
        inputv = Variable(input)
        self.exportTest(toC(netD), toC(inputv), "dcgan-netD")

        noise.resize_(bsz, nz, 1, 1).normal_(0, 1)
        noisev = Variable(noise)
        self.exportTest(toC(netG), toC(noisev), "dcgan-netG")
예제 #3
0
    def test_dcgan(self):
        # dcgan is flaky on some seeds, see:
        # https://github.com/ProjectToffee/onnx/pull/70
        torch.manual_seed(1)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(1)

        netD = dcgan._netD(1)
        netD.apply(dcgan.weights_init)
        input = Variable(torch.randn(BATCH_SIZE, 3, dcgan.imgsz, dcgan.imgsz))
        self.run_model_test(netD, train=False, batch_size=BATCH_SIZE,
                            input=input)

        netG = dcgan._netG(1)
        netG.apply(dcgan.weights_init)
        state_dict = model_zoo.load_url(model_urls['dcgan_b'], progress=False)
        # state_dict = model_zoo.load_url(model_urls['dcgan_f'], progress=False)
        noise = Variable(
            torch.randn(BATCH_SIZE, dcgan.nz, 1, 1).normal_(0, 1))
        self.run_model_test(netG, train=False, batch_size=BATCH_SIZE,
                            input=noise, state_dict=state_dict, rtol=1e-2, atol=1e-6)
예제 #4
0
 def test_dcgan_netG(self):
     netG = _netG(1)
     netG.apply(weights_init)
     input = Variable(torch.Tensor(bsz, nz, 1, 1).normal_(0, 1))
     self.exportTest(toC(netG), toC(input))
예제 #5
0
 def test_dcgan_netG(self):
     netG = _netG(1)
     netG.apply(weights_init)
     input = Variable(torch.Tensor(bsz, nz, 1, 1).normal_(0, 1))
     self.exportTest(toC(netG), toC(input))