def __init__(self, c_num, c_dim, c_hidden, c_layer, w_num, w_dim, w_hidden, w_layer, y_num, droprate, unit='lstm'): super(SeqLabel_CRF, self).__init__() self.word_embed = nn.Embedding(w_num, w_dim) self.y_num = y_num self.crf = CRF(w_dim, y_num) self.drop = nn.Dropout(p = droprate)
def __init__(self, f_lm, b_lm, c_num: int, c_dim: int, c_hidden: int, c_layer: int, w_num: int, w_dim: int, w_hidden: int, w_layer: int, y_num: int, droprate: float, unit: str = 'lstm'): super(SeqLabel, self).__init__() rnnunit_map = {'rnn': nn.RNN, 'lstm': nn.LSTM, 'gru': nn.GRU} self.f_lm = f_lm self.b_lm = b_lm self.char_embed = nn.Embedding(c_num, c_dim) self.word_embed = nn.Embedding(w_num, w_dim) self.char_seq = nn.Linear(c_hidden * 2, w_dim) self.lm_seq = nn.Linear(f_lm.output_dim + b_lm.output_dim, w_dim) self.relu = nn.ReLU() self.c_hidden = c_hidden tmp_rnn_dropout = droprate if c_layer > 1 else 0 self.char_fw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=tmp_rnn_dropout) self.char_bw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=tmp_rnn_dropout) tmp_rnn_dropout = droprate if w_layer > 1 else 0 self.word_rnn = rnnunit_map[unit](w_dim * 3, w_hidden // 2, w_layer, dropout=tmp_rnn_dropout, bidirectional=True) self.y_num = y_num self.crf = CRF(w_hidden, y_num) self.drop = nn.Dropout(p=droprate)
def __init__(self, c_num_list, c_dim, c_hidden, c_layer, w_num_list, w_dim, w_hidden, w_layer, y_num, droprate, unit='lstm'): super(Vanilla_SeqLabel, self).__init__() rnnunit_map = {'rnn': nn.RNN, 'lstm': nn.LSTM, 'gru': nn.GRU} self.lang_num = len(c_num_list) self.char_embed = [nn.Embedding(c_num, c_dim) for c_num in c_num_list] self.word_embed = [nn.Embedding(w_num, w_dim) for w_num in w_num_list] self.char_seq = nn.Linear(c_hidden * 2, w_dim) self.c_hidden = c_hidden self.unit_type = unit tmp_rnn_dropout = droprate if c_layer > 1 else 0 self.char_fw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=tmp_rnn_dropout) self.char_bw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=tmp_rnn_dropout) tmp_rnn_dropout = droprate if w_layer > 1 else 0 self.word_rnn = rnnunit_map[unit](w_dim * 2, w_hidden // 2, w_layer, dropout=tmp_rnn_dropout, bidirectional=True) self.y_num = y_num self.crf = CRF(w_hidden, y_num) self.drop = nn.Dropout(p=droprate)
def __init__(self, f_lm, b_lm, c_num, c_dim, c_hidden, c_layer, w_num, w_dim, w_hidden, w_layer, y_num, droprate, unit='lstm'): super(Vanilla_SeqLabel, self).__init__() rnnunit_map = {'rnn': nn.RNN, 'lstm': nn.LSTM, 'gru': nn.GRU} self.char_embed = nn.Embedding(c_num, c_dim) self.word_embed = nn.Embedding(w_num, w_dim) self.char_seq = nn.Linear(c_hidden * 2, w_dim) self.c_hidden = c_hidden self.char_fw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=droprate) self.char_bw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=droprate) self.word_rnn = rnnunit_map[unit](w_dim + w_dim, w_hidden // 2, w_layer, dropout=droprate, bidirectional=True) self.y_num = y_num self.crf = CRF(w_hidden, y_num) self.drop = nn.Dropout(p=droprate)
class Vanilla_SeqLabel(nn.Module): """ Sequence Labeling model augumented without language model. Parameters ---------- c_num : ``int`` , required. number of characters. c_dim : ``int`` , required. dimension of character embedding. c_hidden : ``int`` , required. dimension of character hidden states. c_layer : ``int`` , required. number of character lstms. w_num : ``int`` , required. number of words. w_dim : ``int`` , required. dimension of word embedding. w_hidden : ``int`` , required. dimension of word hidden states. w_layer : ``int`` , required. number of word lstms. y_num : ``int`` , required. number of tags types. droprate : ``float`` , required dropout ratio. unit : "str", optional, (default = 'lstm') type of the recurrent unit. """ def __init__(self, c_num, c_dim, c_hidden, c_layer, w_num, w_dim, w_hidden, w_layer, y_num, droprate, unit='lstm'): super(Vanilla_SeqLabel, self).__init__() rnnunit_map = {'rnn': nn.RNN, 'lstm': nn.LSTM, 'gru': nn.GRU} self.char_embed = nn.Embedding(c_num, c_dim) self.word_embed = nn.Embedding(w_num, w_dim) self.char_seq = nn.Linear(c_hidden * 2, w_dim) self.c_hidden = c_hidden self.unit_type = unit tmp_rnn_dropout = droprate if c_layer > 1 else 0 self.char_fw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout = tmp_rnn_dropout) self.char_bw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout = tmp_rnn_dropout) tmp_rnn_dropout = droprate if w_layer > 1 else 0 self.word_rnn = rnnunit_map[unit](w_dim * 2, w_hidden // 2, w_layer, dropout = tmp_rnn_dropout, bidirectional = True) self.y_num = y_num self.crf = CRF(w_hidden, y_num) self.drop = nn.Dropout(p = droprate) def to_params(self): """ To parameters. """ return { "model_type": "char-lstm-crf", "word_embed_num": self.word_embed.num_embeddings, "word_embed_dim": self.word_embed.embedding_dim, "char_embed_num": self.char_embed.num_embeddings, "char_embed_dim": self.char_embed.embedding_dim, "char_hidden": self.c_hidden, "char_layers": self.char_fw.num_layers, "word_hidden": self.word_rnn.hidden_size, "word_layers": self.word_rnn.num_layers, "droprate": self.drop.p, "y_num": self.y_num, "label_schema": "iobes", "unit_type": self.unit_type } def set_batch_seq_size(self, sentence): """ set batch size and sequence length """ tmp = sentence.size() self.word_seq_length = tmp[0] self.batch_size = tmp[1] def load_pretrained_word_embedding(self, pre_word_embeddings): """ Load pre-trained word embedding. """ self.word_embed.weight = nn.Parameter(pre_word_embeddings) def rand_init(self): """ Random initialization. """ utils.init_embedding(self.char_embed.weight) utils.init_lstm(self.char_fw) utils.init_lstm(self.char_bw) utils.init_lstm(self.word_rnn) utils.init_linear(self.char_seq) self.crf.rand_init() def forward(self, f_c, f_p, b_c, b_p, f_w): """ Calculate the output (crf potentials). Parameters ---------- f_c : ``torch.LongTensor``, required. Character-level inputs in the forward direction. f_p : ``torch.LongTensor``, required. Ouput position of character-level inputs in the forward direction. b_c : ``torch.LongTensor``, required. Character-level inputs in the backward direction. b_p : ``torch.LongTensor``, required. Ouput position of character-level inputs in the backward direction. f_w: ``torch.LongTensor``, required. Word-level inputs for the sequence labeling model. Returns ------- output: ``torch.FloatTensor``. A float tensor of shape (sequence_len, batch_size, from_tag_size, to_tag_size) """ self.set_batch_seq_size(f_w) f_c_e = self.drop(self.char_embed(f_c)) b_c_e = self.drop(self.char_embed(b_c)) f_c_e, _ = self.char_fw(f_c_e) b_c_e, _ = self.char_bw(b_c_e) f_c_e = f_c_e.view(-1, self.c_hidden).index_select(0, f_p).view(self.word_seq_length, self.batch_size, self.c_hidden) b_c_e = b_c_e.view(-1, self.c_hidden).index_select(0, b_p).view(self.word_seq_length, self.batch_size, self.c_hidden) c_o = self.drop(torch.cat([f_c_e, b_c_e], dim = 2)) c_o = self.char_seq(c_o) w_e = self.word_embed(f_w) rnn_in = self.drop(torch.cat([c_o, w_e], dim = 2)) rnn_out, _ = self.word_rnn(rnn_in) crf_out = self.crf(self.drop(rnn_out)).view(self.word_seq_length, self.batch_size, self.y_num, self.y_num) return crf_out
class SeqLabel_CRF(nn.Module): """ Sequence Labeling model consists of 1) word embedding 2) crf. Parameters ---------- c_num : ``int`` , required. number of characters. c_dim : ``int`` , required. dimension of character embedding. c_hidden : ``int`` , required. dimension of character hidden states. c_layer : ``int`` , required. number of character lstms. w_num : ``int`` , required. number of words. w_dim : ``int`` , required. dimension of word embedding. w_hidden : ``int`` , required. dimension of word hidden states. w_layer : ``int`` , required. number of word lstms. y_num : ``int`` , required. number of tags types. droprate : ``float`` , required dropout ratio. unit : "str", optional, (default = 'lstm') type of the recurrent unit. """ def __init__(self, c_num, c_dim, c_hidden, c_layer, w_num, w_dim, w_hidden, w_layer, y_num, droprate, unit='lstm'): super(SeqLabel_CRF, self).__init__() self.word_embed = nn.Embedding(w_num, w_dim) self.y_num = y_num self.crf = CRF(w_dim, y_num) self.drop = nn.Dropout(p = droprate) def to_params(self): """ To parameters. """ return { "model_type": "char-lstm-crf", "word_embed_num": self.word_embed.num_embeddings, "word_embed_dim": self.word_embed.embedding_dim, "droprate": self.drop.p, "y_num": self.y_num, "label_schema": "iobes", } def set_batch_seq_size(self, sentence): """ set batch size and sequence length """ tmp = sentence.size() self.word_seq_length = tmp[0] self.batch_size = tmp[1] def load_pretrained_word_embedding(self, pre_word_embeddings): """ Load pre-trained word embedding. """ self.word_embed.weight = nn.Parameter(pre_word_embeddings) def load_pretrained_model(self, model): """ Load pre-trained model. """ def rand_init(self, seed=999): """ Random initialization. """ self.crf.rand_init() def forward(self, f_c, f_p, b_c, b_p, f_w): """ Calculate the output (crf potentials). Parameters ---------- f_c : ``torch.LongTensor``, required. Character-level inputs in the forward direction. f_p : ``torch.LongTensor``, required. Ouput position of character-level inputs in the forward direction. b_c : ``torch.LongTensor``, required. Character-level inputs in the backward direction. b_p : ``torch.LongTensor``, required. Ouput position of character-level inputs in the backward direction. f_w: ``torch.LongTensor``, required. Word-level inputs for the sequence labeling model. Returns ------- output: ``torch.FloatTensor``. A float tensor of shape (sequence_len, batch_size, from_tag_size, to_tag_size) """ self.set_batch_seq_size(f_w) w_e = self.word_embed(f_w) crf_out = self.crf(self.drop(w_e)).view(self.word_seq_length, self.batch_size, self.y_num, self.y_num) return crf_out
class SeqLabel(nn.Module): """ Sequence Labeling model augumented with language model. Parameters ---------- f_lm : ``torch.nn.Module``, required. The forward language modle for contextualized representations. b_lm : ``torch.nn.Module``, required. The backward language modle for contextualized representations. c_num : ``int`` , required. The number of characters. c_dim : ``int`` , required. The dimension of character embedding. c_hidden : ``int`` , required. The dimension of character hidden states. c_layer : ``int`` , required. The number of character lstms. w_num : ``int`` , required. The number of words. w_dim : ``int`` , required. The dimension of word embedding. w_hidden : ``int`` , required. The dimension of word hidden states. w_layer : ``int`` , required. The number of word lstms. y_num : ``int`` , required. The number of tags types. droprate : ``float`` , required The dropout ratio. unit : "str", optional, (default = 'lstm') The type of the recurrent unit. """ def __init__(self, f_lm, b_lm, c_num: int, c_dim: int, c_hidden: int, c_layer: int, w_num: int, w_dim: int, w_hidden: int, w_layer: int, y_num: int, droprate: float, unit: str = 'lstm'): super(SeqLabel, self).__init__() rnnunit_map = {'rnn': nn.RNN, 'lstm': nn.LSTM, 'gru': nn.GRU} self.f_lm = f_lm self.b_lm = b_lm self.char_embed = nn.Embedding(c_num, c_dim) self.word_embed = nn.Embedding(w_num, w_dim) self.char_seq = nn.Linear(c_hidden * 2, w_dim) self.lm_seq = nn.Linear(f_lm.output_dim + b_lm.output_dim, w_dim) self.relu = nn.ReLU() self.c_hidden = c_hidden tmp_rnn_dropout = droprate if c_layer > 1 else 0 self.char_fw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=tmp_rnn_dropout) self.char_bw = rnnunit_map[unit](c_dim, c_hidden, c_layer, dropout=tmp_rnn_dropout) tmp_rnn_dropout = droprate if w_layer > 1 else 0 self.word_rnn = rnnunit_map[unit](w_dim * 3, w_hidden // 2, w_layer, dropout=tmp_rnn_dropout, bidirectional=True) self.y_num = y_num self.crf = CRF(w_hidden, y_num) self.drop = nn.Dropout(p=droprate) def prune_dense_rnn(self): """ Prune dense rnn to be smaller by delecting layers. """ f_prune_mask = self.f_lm.prune_dense_rnn() b_prune_mask = self.b_lm.prune_dense_rnn() prune_mask = torch.cat([f_prune_mask, b_prune_mask], dim=0) mask_index = prune_mask.nonzero().squeeze(1) self.lm_seq.weight = nn.Parameter( self.lm_seq.weight.data.index_select(1, mask_index).contiguous()) self.lm_seq.in_features = self.lm_seq.weight.size(1) def set_batch_seq_size(self, sentence): """ Set the batch size and sequence length. """ tmp = sentence.size() self.word_seq_length = tmp[0] self.batch_size = tmp[1] def load_pretrained_word_embedding(self, pre_word_embeddings): """ Load pre-trained word embedding. """ self.word_embed.weight = nn.Parameter(pre_word_embeddings) def rand_init(self): """ Random initialization. """ utils.init_embedding(self.char_embed.weight) utils.init_lstm(self.char_fw) utils.init_lstm(self.char_bw) utils.init_lstm(self.word_rnn) utils.init_linear(self.char_seq) utils.init_linear(self.lm_seq) self.crf.rand_init() def forward(self, f_c, f_p, b_c, b_p, flm_w, blm_w, blm_ind, f_w): """ Calculate the output (crf potentials). Parameters ---------- f_c : ``torch.LongTensor``, required. Character-level inputs in the forward direction. f_p : ``torch.LongTensor``, required. Ouput position of character-level inputs in the forward direction. b_c : ``torch.LongTensor``, required. Character-level inputs in the backward direction. b_p : ``torch.LongTensor``, required. Ouput position of character-level inputs in the backward direction. flm_w : ``torch.LongTensor``, required. Word-level inputs for the forward language model. blm_w : ``torch.LongTensor``, required. Word-level inputs for the backward language model. blm_ind : ``torch.LongTensor``, required. Ouput position of word-level inputs for the backward language model. f_w: ``torch.LongTensor``, required. Word-level inputs for the sequence labeling model. Returns ------- output: ``torch.FloatTensor``. A float tensor of shape (sequence_len, batch_size, from_tag_size, to_tag_size) """ self.set_batch_seq_size(f_w) f_c_e = self.drop(self.char_embed(f_c)) b_c_e = self.drop(self.char_embed(b_c)) f_c_e, _ = self.char_fw(f_c_e) b_c_e, _ = self.char_bw(b_c_e) f_c_e = f_c_e.view(-1, self.c_hidden).index_select(0, f_p).view( self.word_seq_length, self.batch_size, self.c_hidden) b_c_e = b_c_e.view(-1, self.c_hidden).index_select(0, b_p).view( self.word_seq_length, self.batch_size, self.c_hidden) c_o = self.drop(torch.cat([f_c_e, b_c_e], dim=2)) c_o = self.char_seq(c_o) self.f_lm.init_hidden() self.b_lm.init_hidden() f_lm_e = self.f_lm(flm_w) b_lm_e = self.b_lm(blm_w, blm_ind) lm_o = self.drop(torch.cat([f_lm_e, b_lm_e], dim=2)) lm_o = self.relu(self.lm_seq(lm_o)) w_e = self.word_embed(f_w) rnn_in = self.drop(torch.cat([c_o, lm_o, w_e], dim=2)) rnn_out, _ = self.word_rnn(rnn_in) crf_out = self.crf(self.drop(rnn_out)).view(self.word_seq_length, self.batch_size, self.y_num, self.y_num) return crf_out