예제 #1
0
def residual_conv(prev,
                  level,
                  pad=1,
                  lvl=1,
                  sub_lvl=1,
                  modify_stride=False,
                  is_training=True,
                  use_gn=False):
    lvl = str(lvl)
    sub_lvl = str(sub_lvl)
    names = [
        "conv" + lvl + "_" + sub_lvl + "_1x1_reduce",
        "conv" + lvl + "_" + sub_lvl + "_1x1_reduce_bn",
        "conv" + lvl + "_" + sub_lvl + "_3x3",
        "conv" + lvl + "_" + sub_lvl + "_3x3_bn",
        "conv" + lvl + "_" + sub_lvl + "_1x1_increase",
        "conv" + lvl + "_" + sub_lvl + "_1x1_increase_bn"
    ]
    if modify_stride is False:
        prev = Conv2D(prev,
                      64 * level, (1, 1),
                      strides=(1, 1),
                      name=names[0],
                      use_bias=False)
    elif modify_stride is True:
        prev = Conv2D(prev,
                      64 * level, (1, 1),
                      strides=(2, 2),
                      name=names[0],
                      use_bias=False)

    prev = GroupNorm(prev, 4 * level, name=names[0] + '_gn') if use_gn else BN(
        prev, name=names[1], is_training=is_training)
    prev = Activation(prev, 'relu')

    prev = ZeroPadding2D_symmetric(prev, padding=pad)
    prev = Conv2D(prev,
                  64 * level, (3, 3),
                  strides=(1, 1),
                  dilation_rate=pad,
                  name=names[2],
                  use_bias=False)

    prev = GroupNorm(prev, 4 * level, name=names[2] + '_gn') if use_gn else BN(
        prev, name=names[3], is_training=is_training)
    prev = Activation(prev, 'relu')
    prev = Conv2D(prev,
                  256 * level, (1, 1),
                  strides=(1, 1),
                  name=names[4],
                  use_bias=False)
    prev = GroupNorm(prev, 16 * level, name=names[4] +
                     '_gn') if use_gn else BN(
                         prev, name=names[5], is_training=is_training)
    return prev
예제 #2
0
def short_convolution_branch(prev,
                             level,
                             lvl=1,
                             sub_lvl=1,
                             modify_stride=False,
                             is_training=True,
                             use_gn=False):
    lvl = str(lvl)
    sub_lvl = str(sub_lvl)
    names = [
        "conv" + lvl + "_" + sub_lvl + "_1x1_proj",
        "conv" + lvl + "_" + sub_lvl + "_1x1_proj_bn"
    ]

    if modify_stride is False:
        prev = Conv2D(prev,
                      256 * level, (1, 1),
                      strides=(1, 1),
                      name=names[0],
                      use_bias=False)
    elif modify_stride is True:
        prev = Conv2D(prev,
                      256 * level, (1, 1),
                      strides=(2, 2),
                      name=names[0],
                      use_bias=False)

    prev = GroupNorm(prev, 16 * level, name=names[0] +
                     '_gn') if use_gn else BN(
                         prev, name=names[1], is_training=is_training)
    return prev
예제 #3
0
def pspnet_top_cls_v2(inputs,
                      dynamic_envs,
                      nb_classes,
                      activation='softmax',
                      is_training=True):
    dropout_ratio = 0.1 if is_training else 0
    with tf.variable_scope('top_cls_v2') as _:
        feature_with_envs = Concatenate([inputs, dynamic_envs])

        res = residual_short(feature_with_envs,
                             8,
                             pad=4,
                             lvl=5,
                             sub_lvl=1,
                             is_training=is_training,
                             use_gn=True)
        for i in range(2):
            res = residual_empty(res,
                                 8,
                                 pad=4,
                                 lvl=5,
                                 sub_lvl=i + 2,
                                 is_training=is_training,
                                 use_gn=True)

        res = Activation(res, 'relu')

        psp = build_pyramid_pooling_module(res,
                                           is_training=is_training,
                                           use_gn=True)

        x = Conv2D(psp,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv5_4",
                   use_bias=False)
        x = GroupNorm(x, 32, name="conv5_4_gn")
        x = Activation(x, 'relu')
        x = Dropout(x, dropout_ratio)

        x = Conv2D(x,
                   nb_classes, (1, 1),
                   strides=(1, 1),
                   padding="same",
                   name="conv6")
        x = Activation(x, activation)

        return x
예제 #4
0
def build_pspnet_ade20k_prior(nb_classes,
                              inputs,
                              activation='softmax',
                              is_training=True):
    """Build PSPNet."""
    dropout_ratio = 0.1 if is_training else 0

    x_dd = Conv2D(inputs,
                  512, (3, 3),
                  strides=(1, 1),
                  padding="same",
                  name="conv5_4",
                  use_bias=False)
    x_dd = BN(x_dd, name="conv5_4_bn", is_training=is_training)
    x_dd = Activation(x_dd, 'relu')

    x_dd = Dropout(x_dd, dropout_ratio)

    prior = Conv2D(x_dd,
                   nb_classes, (1, 1),
                   strides=(1, 1),
                   padding="same",
                   name="conv6")
    prior = Activation(prior, activation)

    x_nd = Conv2D(inputs,
                  512, (3, 3),
                  strides=(1, 1),
                  padding="same",
                  name="base_prediction_conv5_4",
                  use_bias=False)
    x_nd = GroupNorm(x_nd, 32, name="base_prediction_conv5_4_gn")
    x_nd = Activation(x_nd, 'relu')
    x_nd = Dropout(x_nd, dropout_ratio)

    base_prediction = Conv2D(x_nd,
                             nb_classes, (1, 1),
                             strides=(1, 1),
                             padding="same",
                             name="base_prediction_conv6")

    return base_prediction, Interp(prior, [473, 473])
예제 #5
0
def interp_block(prev_layer,
                 level,
                 feature_map_shape,
                 str_lvl=1,
                 dims=None,
                 name=None,
                 is_training=True,
                 use_gn=False):
    if name:
        names = [name + "_conv", name + "_conv_bn"]
    else:
        str_lvl = str(str_lvl)

        names = [
            "conv5_3_pool" + str_lvl + "_conv",
            "conv5_3_pool" + str_lvl + "_conv_bn"
        ]

    out_dims = dims if dims else 512

    kernel = (int(ceil(feature_map_shape[0] / level)),
              int(ceil(feature_map_shape[1] / level)))
    strides = (int(ceil(feature_map_shape[0] / level)),
               int(ceil(feature_map_shape[1] / level)))
    prev_layer = AveragePooling2D(prev_layer, kernel, strides=strides)
    prev_layer = Conv2D(prev_layer,
                        out_dims, (1, 1),
                        strides=(1, 1),
                        name=names[0],
                        use_bias=False)
    prev_layer = GroupNorm(
        prev_layer, out_dims / 16, name=names[0] + '_gn') if use_gn else BN(
            prev_layer, name=names[1], is_training=is_training)
    prev_layer = Activation(prev_layer, 'relu')
    prev_layer = Interp(prev_layer, shape=feature_map_shape)

    return prev_layer
예제 #6
0
def pspnet_top_plc(inputs,
                   dynamic_envs,
                   inputs_shape_spatial,
                   is_training=True):
    dynamic_envs_size = dynamic_envs.shape.as_list()[1:3]
    dropout_ratio = 0.1 if is_training else 0
    with tf.variable_scope('top_plc') as _:
        envs_1 = interp_block(dynamic_envs,
                              1,
                              dynamic_envs_size,
                              name='env_proj_1',
                              dims=64,
                              is_training=is_training)
        envs_2 = interp_block(dynamic_envs,
                              2,
                              dynamic_envs_size,
                              name='env_proj_2',
                              dims=64,
                              is_training=is_training)
        envs_3 = interp_block(dynamic_envs,
                              3,
                              dynamic_envs_size,
                              name='env_proj_3',
                              dims=64,
                              is_training=is_training)
        envs_6 = interp_block(dynamic_envs,
                              6,
                              dynamic_envs_size,
                              name='env_proj_6',
                              dims=64,
                              is_training=is_training)
        envs_x = Concatenate(
            [inputs, dynamic_envs, envs_6, envs_3, envs_2, envs_1])
        '''
        envs_z = Concatenate([dynamic_envs, envs_6, envs_3, envs_2, envs_1])
        
        z = Conv2D(envs_z, 256, (3, 3), strides=(1, 1), padding="same", name="conv_top_plc_dyenv_1",
                   use_bias=False)
        # z = BN(z, name="conv_top_cls_1_1_bn", is_training=is_training)
        z = GroupNorm(z, 16, name='conv_top_plc_dyenv_1_gn')
        z = Activation(z, 'relu')

        top_shortcut_z = z

        z = Conv2D(z, 256, (3, 3), strides=(1, 1), padding="same", name="conv_top_plc_dyenv_2",
                   use_bias=False)
        # z = BN(z, name="conv_top_cls_1_2_bn", is_training=is_training)
        z = GroupNorm(z, 16, name='conv_top_plc_dyenv_2_gn')
        z = Activation(z, 'relu')

        z = Conv2D(z, 256, (3, 3), strides=(1, 1), padding="same", name="conv_top_plc_dyenv_3",
                   use_bias=False)
        # z = BN(z, name="conv_top_cls_1_3_bn", is_training=is_training)
        z = GroupNorm(z, 16, name='conv_top_plc_dyenv_3_gn')
        z = Activation(z, 'relu')

        z = z + top_shortcut_z
        '''
        x = Conv2D(envs_x,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv_top_plc_env_1",
                   use_bias=False)
        # x = BN(x, name="conv_top_cls_1_bn", is_training=is_training)
        x = GroupNorm(x, 32, name='conv_top_plc_env_1_gn')
        x = Activation(x, 'relu')

        top_shortcut_x = x

        x = Conv2D(x,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv_top_plc_env_2",
                   use_bias=False)
        # x = BN(x, name="conv_top_cls_2_bn", is_training=is_training)
        x = GroupNorm(x, 32, name='conv_top_plc_env_2_gn')
        x = Activation(x, 'relu')

        x = Conv2D(x,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv_top_plc_env_3",
                   use_bias=False)
        # x = BN(x, name="conv_top_cls_3_bn", is_training=is_training)
        x = GroupNorm(x, 32, name='conv_top_plc_env_3_gn')
        x = Activation(x, 'relu')

        x = x + top_shortcut_x

        #zx = Concatenate([z, x])
        zx = x
        # top_shortcut_zx = zx

        zx = Conv2D(zx,
                    512, (3, 3),
                    strides=(1, 1),
                    padding="same",
                    name="conv_top_plc_dyenvs",
                    use_bias=False)
        zx = GroupNorm(zx, 32, name='conv_top_plc_dyenvs_gn')
        zx = Activation(zx, 'relu')

        zx = zx + top_shortcut_x

        zx = Dropout(zx, dropout_ratio)

        preact_policy = Conv2D(zx,
                               2, (1, 1),
                               strides=(1, 1),
                               padding="same",
                               name="conv_policy")
        interp_preact_policy = Interp(
            x=preact_policy,
            shape=inputs_shape_spatial,
            method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

        state_value = Conv2D(zx,
                             1, (1, 1),
                             strides=(1, 1),
                             name="conv_value",
                             use_bias=False)

        policy = Activation(preact_policy, 'softmax')
        interp_policy = Activation(interp_preact_policy, 'softmax')

        return tf.squeeze(state_value,
                          axis=-1), (preact_policy, policy,
                                     interp_preact_policy, interp_policy)
예제 #7
0
def pspnet_top_cls(inputs,
                   knowledges,
                   base_prediction,
                   nb_classes,
                   activation='softmax',
                   is_knowledge_empty=False,
                   is_training=True):
    dynamic_envs_size = knowledges.shape.as_list()[1:3]
    dropout_ratio = 0.1 if is_training else 0
    with tf.variable_scope('top_cls') as _:
        #dim 64 -> dim 256
        knowledges_1 = interp_block(knowledges,
                                    1,
                                    dynamic_envs_size,
                                    name='knowledges_proj_1',
                                    dims=256,
                                    use_gn=True,
                                    is_training=is_training)
        knowledges_2 = interp_block(knowledges,
                                    2,
                                    dynamic_envs_size,
                                    name='knowledges_proj_2',
                                    dims=256,
                                    use_gn=True,
                                    is_training=is_training)
        knowledges_3 = interp_block(knowledges,
                                    3,
                                    dynamic_envs_size,
                                    name='knowledges_proj_3',
                                    dims=256,
                                    use_gn=True,
                                    is_training=is_training)
        knowledges_6 = interp_block(knowledges,
                                    6,
                                    dynamic_envs_size,
                                    name='knowledges_proj_6',
                                    dims=256,
                                    use_gn=True,
                                    is_training=is_training)
        knowledges_x = Concatenate([
            inputs, knowledges, knowledges_6, knowledges_3, knowledges_2,
            knowledges_1
        ])
        '''
        envs_z = Concatenate([dynamic_envs, envs_6, envs_3, envs_2, envs_1])

        z = Conv2D(envs_z, 256, (3, 3), strides=(1, 1), padding="same", name="conv_top_cls_dyenv_1",
                   use_bias=False)
        #z = BN(z, name="conv_top_cls_1_1_bn", is_training=is_training)
        z = GroupNorm(z, 16, name='conv_top_cls_dyenv_1_gn')
        z = Activation(z, 'relu')

        top_shortcut_z = z

        z = Conv2D(z, 256, (3, 3), strides=(1, 1), padding="same", name="conv_top_cls_dyenv_2",
                   use_bias=False)
        #z = BN(z, name="conv_top_cls_1_2_bn", is_training=is_training)
        z = GroupNorm(z, 16, name='conv_top_cls_dyenv_2_gn')
        z = Activation(z, 'relu')

        z = Conv2D(z, 256, (3, 3), strides=(1, 1), padding="same", name="conv_top_cls_dyenv_3",
                   use_bias=False)
        #z = BN(z, name="conv_top_cls_1_3_bn", is_training=is_training)
        z = GroupNorm(z, 16, name='conv_top_cls_dyenv_3_gn')
        z = Activation(z, 'relu')

        z = z + top_shortcut_z
        '''
        x = Conv2D(knowledges_x,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv_top_cls_env_1",
                   use_bias=False)
        #x = BN(x, name="conv_top_cls_1_bn", is_training=is_training)
        x = GroupNorm(x, 32, name='conv_top_cls_knowledges_1_gn')
        x = Activation(x, 'relu')

        top_shortcut_x = x

        x = Conv2D(x,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv_top_cls_knowledges_2",
                   use_bias=False)
        #x = BN(x, name="conv_top_cls_2_bn", is_training=is_training)
        x = GroupNorm(x, 32, name='conv_top_cls_knowledges_2_gn')
        x = Activation(x, 'relu')

        x = Conv2D(x,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv_top_cls_knowledges_3",
                   use_bias=False)
        #x = BN(x, name="conv_top_cls_3_bn", is_training=is_training)
        x = GroupNorm(x, 32, name='conv_top_cls_knowledges_3_gn')
        x = Activation(x, 'relu')

        x = x + top_shortcut_x

        #zx = Concatenate([z, x])
        zx = x
        #top_shortcut_zx = zx

        zx = Conv2D(zx,
                    512, (3, 3),
                    strides=(1, 1),
                    padding="same",
                    name="conv_top_cls_knowledges",
                    use_bias=False)
        zx = GroupNorm(zx, 32, name='conv_top_cls_knowledges_gn')
        zx = Activation(zx, 'relu')

        zx = zx + top_shortcut_x

        zx = Dropout(zx, dropout_ratio)

        zx = Conv2D(zx,
                    nb_classes, (1, 1),
                    strides=(1, 1),
                    padding="same",
                    use_bias=False,
                    name="conv_class")

        #x_activation = Activation(x, activation)
        if not is_knowledge_empty:
            return zx + base_prediction
        else:
            return base_prediction
예제 #8
0
def pspnet_top_plc_v2(inputs,
                      dynamic_envs,
                      inputs_shape_spatial,
                      is_training=True):
    dropout_ratio = 0.1 if is_training else 0
    with tf.variable_scope('top_plc_v2') as _:
        feature_with_envs = Concatenate([inputs, dynamic_envs])

        res = residual_short(feature_with_envs,
                             8,
                             pad=4,
                             lvl=5,
                             sub_lvl=1,
                             is_training=is_training,
                             use_gn=True)
        for i in range(2):
            res = residual_empty(res,
                                 8,
                                 pad=4,
                                 lvl=5,
                                 sub_lvl=i + 2,
                                 is_training=is_training,
                                 use_gn=True)

        res = Activation(res, 'relu')

        psp = build_pyramid_pooling_module(res,
                                           is_training=is_training,
                                           use_gn=True)

        x = Conv2D(psp,
                   512, (3, 3),
                   strides=(1, 1),
                   padding="same",
                   name="conv5_4",
                   use_bias=False)
        x = GroupNorm(x, 32, name="conv5_4_gn")
        x = Activation(x, 'relu')
        x = Dropout(x, dropout_ratio)

        preact_policy = Conv2D(x,
                               2, (1, 1),
                               strides=(1, 1),
                               padding="same",
                               name="conv_policy")
        interp_preact_policy = Interp(
            x=preact_policy,
            shape=inputs_shape_spatial,
            method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

        state_value = Conv2D(x,
                             1, (1, 1),
                             strides=(1, 1),
                             name="conv_value",
                             use_bias=False)

        policy = Activation(preact_policy, 'softmax')
        interp_policy = Activation(interp_preact_policy, 'softmax')

        return tf.squeeze(state_value,
                          axis=-1), (preact_policy, policy,
                                     interp_preact_policy, interp_policy)