예제 #1
0
def alexnet(images, trainable=True):
    conv1 = conv2d_layer("conv1",
                         images,
                         filters=64,
                         kernel_size=11,
                         strides=4,
                         padding="VALID")
    pool1 = flow.nn.avg_pool2d(conv1, 3, 2, "VALID", "NCHW", name="pool1")
    conv2 = conv2d_layer("conv2", pool1, filters=192, kernel_size=5)
    pool2 = flow.nn.avg_pool2d(conv2, 3, 2, "VALID", "NCHW", name="pool2")
    conv3 = conv2d_layer("conv3", pool2, filters=384)
    conv4 = conv2d_layer("conv4", conv3, filters=384)
    conv5 = conv2d_layer("conv5", conv4, filters=256)
    pool5 = flow.nn.avg_pool2d(conv5, 3, 2, "VALID", "NCHW", name="pool5")
    if len(pool5.shape) > 2:
        pool5 = flow.reshape(pool5, shape=(pool5.shape[0], -1))
    fc1 = flow.layers.dense(
        inputs=pool5,
        units=4096,
        activation=flow.math.relu,
        use_bias=False,
        kernel_initializer=flow.random_uniform_initializer(),
        bias_initializer=False,
        trainable=trainable,
        name="fc1",
    )
    dropout1 = flow.nn.dropout(fc1, rate=0.5)
    fc2 = flow.layers.dense(
        inputs=dropout1,
        units=4096,
        activation=flow.math.relu,
        use_bias=False,
        kernel_initializer=flow.random_uniform_initializer(),
        bias_initializer=False,
        trainable=trainable,
        name="fc2",
    )
    dropout2 = flow.nn.dropout(fc2, rate=0.5)
    fc3 = flow.layers.dense(
        inputs=dropout2,
        units=1001,
        activation=None,
        use_bias=False,
        kernel_initializer=flow.random_uniform_initializer(),
        bias_initializer=False,
        trainable=trainable,
        name="fc3",
    )
    return fc3
예제 #2
0
파일: vgg_model.py 프로젝트: zzk0/oneflow
def _conv_block(in_blob, index, filters, conv_times):
    conv_block = []
    conv_block.insert(0, in_blob)
    for i in range(conv_times):
        conv_i = conv2d_layer(
            name="conv{}".format(index),
            input=conv_block[i],
            filters=filters,
            kernel_size=3,
            strides=1,
        )
        conv_block.append(conv_i)
        index += 1
    return conv_block