def build_training_model(config, experiment): # set device device_opt = caffe2_pb2.DeviceOption() if config['gpu_id'] is not None: device_opt.device_type = caffe2_pb2.CUDA device_opt.cuda_gpu_id = config['gpu_id'] # build model with core.DeviceScope(device_opt): training_model = model_helper.ModelHelper( name='{}_training_model'.format(config['name']), ) data, label = add_input(training_model, config, is_test=False) pred = add_model(training_model, config, data, is_test=False) loss = add_loss(training_model, config, pred, label) add_training_operators(training_model, config, loss) add_accuracy(training_model) # init workspace for training net workspace.RunNetOnce(training_model.param_init_net) # if in finetune mode, we need to load pretrained weights and bias if config['finetune']: load_init_net(config['network']['init_net'], device_opt) if config['solver']['percent'] is not None: prune_init_net(workspace, config, device_opt, experiment) workspace.CreateNet(training_model.net) return training_model
def build_validation_model(config): # set device device_opt = caffe2_pb2.DeviceOption() if config['gpu_id'] is not None: device_opt.device_type = caffe2_pb2.CUDA device_opt.cuda_gpu_id = config['gpu_id'] # build model with core.DeviceScope(device_opt): validation_model = model_helper.ModelHelper( name='{}_validation_model'.format(config['name']), init_params=False, ) data, label = add_input(validation_model, config, is_test=True) pred = add_model(validation_model, config, data, is_test=True) loss = add_loss(validation_model, config, pred, label) add_accuracy(validation_model) # init workspace for validation net workspace.RunNetOnce(validation_model.param_init_net) # load pretrained network params load_init_net(config['network']['init_net'], device_opt) workspace.CreateNet(validation_model.net) return validation_model