예제 #1
0
	def __init__(self, dim_in, spatial_scales):
		super().__init__()
		self.dim_in = dim_in
		self.spatial_scales = spatial_scales
		self.dim_out = self.dim_in
		num_anchors = len(cfg.FPN.RPN_ASPECT_RATIOS)
		
		# Create conv ops shared by all FPN levels
		self.FPN_RPN_conv = nn.Conv2d(dim_in, self.dim_out, 3, 1, 1)
		dim_score = num_anchors * 2 if cfg.RPN.CLS_ACTIVATION == 'softmax' \
			else num_anchors
		self.FPN_RPN_cls_score = nn.Conv2d(self.dim_out, dim_score, 1, 1, 0)
		self.FPN_RPN_bbox_pred = nn.Conv2d(self.dim_out, 4 * num_anchors, 1, 1, 0)
		
		self.GenerateProposals_modules = nn.ModuleList()
		k_max = cfg.FPN.RPN_MAX_LEVEL  # coarsest level of pyramid
		k_min = cfg.FPN.RPN_MIN_LEVEL  # finest level of pyramid
		for lvl in range(k_min, k_max + 1):
			sc = self.spatial_scales[k_max - lvl]  # in reversed order
			lvl_anchors = generate_anchors(
				stride = 2. ** lvl,
				sizes = (cfg.FPN.RPN_ANCHOR_START_SIZE * 2. ** (lvl - k_min),),
				aspect_ratios = cfg.FPN.RPN_ASPECT_RATIOS
			)
			self.GenerateProposals_modules.append(GenerateProposalsOp(lvl_anchors, sc))
		
		self.CollectAndDistributeFpnRpnProposals = CollectAndDistributeFpnRpnProposalsOp()
		
		self._init_weights()
예제 #2
0
파일: FPN.py 프로젝트: xixiobba/MVP-Net
    def __init__(self, dim_in, spatial_scales):
        super().__init__()
        self.dim_in = dim_in
        self.spatial_scales = spatial_scales
        self.dim_out = self.dim_in
        num_anchors = len(cfg.FPN.RPN_ASPECT_RATIOS)

        # Create conv ops shared by all FPN levels
        # 12/25,RPN 3D CONTEXT TEST
        if cfg.LESION.CONCAT_BEFORE_RPN:
            #self.cbam = CBAM(self.dim_in*cfg.LESION.NUM_IMAGES_3DCE, 16)
            #self.FPN_RPN_conv_embedding = nn.Conv2d(self.dim_in*cfg.LESION.NUM_IMAGES_3DCE, self.dim_in, 1)
            self.FPN_RPN_conv = nn.Conv2d(self.dim_in*cfg.LESION.NUM_IMAGES_3DCE, self.dim_in, 1)
        else:
            self.FPN_RPN_conv = nn.Conv2d(self.dim_in, self.dim_out, 3, 1, 1)

        #elif cfg.LESION.SUM_BEFORE_RPN:
            #self.FPN_RPN_conv_embedding = nn.Conv2d(self.dim_in, self.dim_in, 1)
        #self.FPN_RPN_conv = nn.Conv2d(self.dim_in*cfg.LESION.NUM_IMAGES_3DCE, self.dim_out, 3, 1, 1)
        dim_score = num_anchors * 2 if cfg.RPN.CLS_ACTIVATION == 'softmax' \
            else num_anchors
        self.FPN_RPN_cls_score = nn.Conv2d(self.dim_out, dim_score, 1, 1, 0)
        self.FPN_RPN_bbox_pred = nn.Conv2d(self.dim_out, 4 * num_anchors, 1, 1, 0)

        self.GenerateProposals_modules = nn.ModuleList()
        k_max = cfg.FPN.RPN_MAX_LEVEL  # coarsest level of pyramid
        k_min = cfg.FPN.RPN_MIN_LEVEL  # finest level of pyramid
        #anchor_scale = [0,0,2,3,4,6,12]
        #anchor_scale = [0,0,1,2,4,8,16]
        #anchor_scale = [0,0,1,2,3,6,12]
        for lvl in range(k_min, k_max + 1):
            sc = self.spatial_scales[k_max - lvl]  # in reversed order
            lvl_anchors = generate_anchors(
                stride=2.**lvl,
                sizes=(cfg.FPN.RPN_ANCHOR_START_SIZE * 2.**(lvl - k_min), ),
                #sizes=(cfg.FPN.RPN_ANCHOR_START_SIZE * anchor_scale[lvl], ),
                aspect_ratios=cfg.FPN.RPN_ASPECT_RATIOS
            )
            self.GenerateProposals_modules.append(GenerateProposalsOp(lvl_anchors, sc))

        self.CollectAndDistributeFpnRpnProposals = CollectAndDistributeFpnRpnProposalsOp()

        self._init_weights()
    def __init__(self, dim_in, spatial_scales):
        super().__init__()
        self.dim_in = dim_in
        self.spatial_scales = spatial_scales
        self.dim_out = self.dim_in
        num_anchors = len(cfg.FPN.RPN_ASPECT_RATIOS)

        # Create conv ops shared by all FPN levels
        '''i think this is the head part, they go across a conv with equal-input-output-size, and then
        go through the score and bbox subnet separately'''

        self.FPN_RPN_conv = nn.Conv2d(dim_in, self.dim_out, 3, 1, 1)
        dim_score = num_anchors * 2 if cfg.RPN.CLS_ACTIVATION == 'softmax' \
            else num_anchors
        self.FPN_RPN_cls_score = nn.Conv2d(self.dim_out, dim_score, 1, 1, 0)
        self.FPN_RPN_bbox_pred = nn.Conv2d(self.dim_out, 4 * num_anchors, 1, 1,
                                           0)

        self.GenerateProposals_modules = nn.ModuleList()
        k_max = cfg.FPN.RPN_MAX_LEVEL  # coarsest level of pyramid
        k_min = cfg.FPN.RPN_MIN_LEVEL  # finest level of pyramid
        for lvl in range(k_min, k_max + 1):
            '''3..0'''
            sc = self.spatial_scales[k_max - lvl]  # in reversed order
            '''FIXME the part to work with!!'''
            lvl_anchors = generate_anchors(
                stride=2.**lvl,
                sizes=(cfg.FPN.RPN_ANCHOR_START_SIZE * 2.**(lvl - k_min), ),
                aspect_ratios=cfg.FPN.RPN_ASPECT_RATIOS)
            self.GenerateProposals_modules.append(
                GenerateProposalsOp(lvl_anchors, sc))

        self.CollectAndDistributeFpnRpnProposals = CollectAndDistributeFpnRpnProposalsOp(
        )

        self._init_weights()
예제 #4
0
    def _forward(self, data, im_info, roidb=None, **rpn_kwargs):
        im_data = data
        if self.training:
            roidb = list(map(lambda x: blob_utils.deserialize(x)[0], roidb))

        device_id = im_data.get_device()

        return_dict = {}  # A dict to collect return variables

        blob_conv = self.Conv_Body(im_data)

        rpn_ret = self.RPN(blob_conv, im_info, roidb)

        # if self.training:
        #     # can be used to infer fg/bg ratio
        #     return_dict['rois_label'] = rpn_ret['labels_int32']

        if cfg.FPN.FPN_ON:
            # Retain only the blobs that will be used for RoI heads. `blob_conv` may include
            # extra blobs that are used for RPN proposals, but not for RoI heads.
            blob_conv = blob_conv[-self.num_roi_levels:]

        if not self.training:
            return_dict['blob_conv'] = blob_conv

        if not cfg.MODEL.RPN_ONLY:
            if cfg.MODEL.SHARE_RES5 and self.training:
                box_feat, res5_feat = self.Box_Head(blob_conv, rpn_ret)
            else:
                box_feat = self.Box_Head(blob_conv, rpn_ret)
            cls_score, bbox_pred = self.Box_Outs(box_feat)
        else:
            # TODO: complete the returns for RPN only situation
            pass

        if self.training:
            return_dict['losses'] = {}
            return_dict['metrics'] = {}
            # rpn loss
            rpn_kwargs.update(
                dict((k, rpn_ret[k]) for k in rpn_ret.keys()
                     if (k.startswith('rpn_cls_logits')
                         or k.startswith('rpn_bbox_pred'))))
            loss_rpn_cls, loss_rpn_bbox = rpn_heads.generic_rpn_losses(
                **rpn_kwargs)
            if cfg.FPN.FPN_ON:
                for k, lvl in enumerate(
                        range(cfg.FPN.RPN_MIN_LEVEL,
                              cfg.FPN.RPN_MAX_LEVEL + 1)):
                    return_dict['losses']['loss_rpn_cls_fpn%d' %
                                          lvl] = loss_rpn_cls[k]
                    return_dict['losses']['loss_rpn_bbox_fpn%d' %
                                          lvl] = loss_rpn_bbox[k]
            else:
                return_dict['losses']['loss_rpn_cls'] = loss_rpn_cls
                return_dict['losses']['loss_rpn_bbox'] = loss_rpn_bbox

            # bbox loss
            loss_cls, loss_bbox, accuracy_cls = fast_rcnn_heads.fast_rcnn_losses(
                cls_score,
                bbox_pred,
                rpn_ret['labels_int32'],
                rpn_ret['bbox_targets'],
                rpn_ret['bbox_inside_weights'],
                rpn_ret['bbox_outside_weights'],
                stage=0)
            return_dict['losses']['loss_cls'] = loss_cls
            return_dict['losses']['loss_bbox'] = loss_bbox
            return_dict['metrics']['accuracy_cls'] = accuracy_cls

            if cfg.MODEL.MASK_ON:
                if getattr(self.Mask_Head, 'SHARE_RES5', False):
                    mask_feat = self.Mask_Head(
                        res5_feat,
                        rpn_ret,
                        roi_has_mask_int32=rpn_ret['roi_has_mask_int32'])
                else:
                    mask_feat = self.Mask_Head(blob_conv, rpn_ret)
                mask_pred = self.Mask_Outs(mask_feat)
                # return_dict['mask_pred'] = mask_pred
                # mask loss
                loss_mask = mask_rcnn_heads.mask_rcnn_losses(
                    mask_pred, rpn_ret['masks_int32'])
                return_dict['losses']['loss_mask'] = loss_mask

            if cfg.MODEL.KEYPOINTS_ON:
                if getattr(self.Keypoint_Head, 'SHARE_RES5', False):
                    # No corresponding keypoint head implemented yet (Neither in Detectron)
                    # Also, rpn need to generate the label 'roi_has_keypoints_int32'
                    kps_feat = self.Keypoint_Head(
                        res5_feat,
                        rpn_ret,
                        roi_has_keypoints_int32=rpn_ret[
                            'roi_has_keypoint_int32'])
                else:
                    kps_feat = self.Keypoint_Head(blob_conv, rpn_ret)
                kps_pred = self.Keypoint_Outs(kps_feat)
                # return_dict['keypoints_pred'] = kps_pred
                # keypoints loss
                if cfg.KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS:
                    loss_keypoints = keypoint_rcnn_heads.keypoint_losses(
                        kps_pred, rpn_ret['keypoint_locations_int32'],
                        rpn_ret['keypoint_weights'])
                else:
                    loss_keypoints = keypoint_rcnn_heads.keypoint_losses(
                        kps_pred, rpn_ret['keypoint_locations_int32'],
                        rpn_ret['keypoint_weights'],
                        rpn_ret['keypoint_loss_normalizer'])
                return_dict['losses']['loss_kps'] = loss_keypoints

            # pytorch0.4 bug on gathering scalar(0-dim) tensors
            for k, v in return_dict['losses'].items():
                return_dict['losses'][k] = v.unsqueeze(0)
            for k, v in return_dict['metrics'].items():
                return_dict['metrics'][k] = v.unsqueeze(0)

        if not cfg.FAST_RCNN.USE_CASCADE:
            return_dict['rois'] = rpn_ret['rois']
            return_dict['cls_score'] = cls_score
            return_dict['bbox_pred'] = bbox_pred
        else:
            return_dict['rois' + '_{}'.format(0)] = rpn_ret['rois']
            return_dict['cls_score' + '_{}'.format(0)] = cls_score.detach()
            return_dict['bbox_pred' + '_{}'.format(0)] = bbox_pred.detach()

        if cfg.FAST_RCNN.USE_CASCADE:
            for i in range(2):
                i += 1
                pre_stage_name = '_{}'.format(i - 1)
                cls_score_cpu = cls_score.data.cpu().numpy()
                import utils.boxes as box_utils
                bbox_pred_cpu = bbox_pred.reshape(
                    [-1, bbox_pred.shape[-1]]).data.cpu().numpy().squeeze()
                rois = deepcopy(return_dict['rois' + pre_stage_name])

                assert cfg.MODEL.CLS_AGNOSTIC_BBOX_REG is True
                if not cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
                    cls_loc = np.argmax(cls_score_cpu[:, 1:], axis=1) + 1
                    cls_loc = np.reshape(cls_loc, (cls_loc.shape[0], 1))
                    # Based on scores, we can select transformed rois
                    scores = np.zeros((cls_score_cpu.shape[0], 1))
                    for k in range(len(cls_loc)):
                        scores[k] = cls_score_cpu[k, cls_loc[k]]

                batch_inds = rois[:, 0]
                uni_inds = np.unique(batch_inds)

                # WE suppose the WIDTH of image is EQUAL to its HEIGHT

                # We also provide an example to show how to perform the operation batch-wise
                # Scale forward
                batch_se = []
                for e in range(len(uni_inds)):
                    id_min = min(np.where(batch_inds == uni_inds[e])[0])
                    id_max = max(np.where(batch_inds == uni_inds[e])[0])
                    rois[id_min:id_max + 1, 1:5] /= im_info[e][2]
                    batch_se.append([id_min, id_max])

                pred_boxes = box_utils.bbox_transform(
                    rois[:, 1:5], bbox_pred_cpu,
                    cfg.CASCADE_RCNN.BBOX_REG_WEIGHTS[i])
                # Scale back
                for e in range(len(uni_inds)):
                    id_min = batch_se[e][0]
                    id_max = batch_se[e][1]
                    pred_boxes[id_min:id_max + 1] *= im_info[e][2]
                    pred_boxes[id_min:id_max + 1] = box_utils.clip_tiled_boxes(
                        pred_boxes[id_min:id_max + 1], im_info[e][0:2])

                cfg_key = 'TRAIN' if self.training else 'TEST'
                min_size = cfg[cfg_key].RPN_MIN_SIZE

                if not cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
                    # Cannot use for loop here which may cause "illegal memory access"
                    # Thanks to Chen-Wei Xie !
                    rows = pred_boxes.shape[0]
                    b3 = cls_loc * 4 + np.array([0, 1, 2, 3])
                    b4 = np.array(range(rows))
                    c = pred_boxes[np.repeat(b4, 4), b3.flatten()]
                    proposals = np.reshape(c, (-1, 4))
                else:
                    proposals = pred_boxes[:, 4:8]

                keep = _filter_boxes(proposals, min_size, im_info[0])

                proposals = proposals[keep, :]
                batch_inds = batch_inds[keep]

                batch_inds = np.reshape(batch_inds, [len(batch_inds), 1])

                proposals = np.concatenate((batch_inds, proposals), axis=1)

                from modeling.collect_and_distribute_fpn_rpn_proposals import CollectAndDistributeFpnRpnProposalsOp
                self.CollectAndDistributeFpnRpnProposals = CollectAndDistributeFpnRpnProposalsOp(
                )
                self.CollectAndDistributeFpnRpnProposals.training = self.training
                # proposals.astype('float32')
                blobs_out = self.CollectAndDistributeFpnRpnProposals(proposals,
                                                                     roidb,
                                                                     im_info,
                                                                     stage=i)
                # Update rpn_ret
                new_rpn_ret = {}
                for key, value in rpn_ret.items():
                    if 'rpn' in key:
                        new_rpn_ret[key] = value

                new_rpn_ret.update(blobs_out)

                if not self.training:
                    return_dict['blob_conv'] = blob_conv

                if not cfg.MODEL.RPN_ONLY:
                    if i == 1:
                        if cfg.MODEL.SHARE_RES5 and self.training:
                            box_feat, res5_feat = self.Box_Head_2(
                                blob_conv, new_rpn_ret)
                        else:
                            box_feat = self.Box_Head_2(blob_conv, new_rpn_ret)

                        cls_score, bbox_pred = self.Box_Outs_2(box_feat)
                    elif i == 2:
                        if cfg.MODEL.SHARE_RES5 and self.training:
                            box_feat, res5_feat = self.Box_Head_3(
                                blob_conv, new_rpn_ret)
                        else:
                            box_feat = self.Box_Head_3(blob_conv, new_rpn_ret)

                        cls_score, bbox_pred = self.Box_Outs_3(box_feat)

                if self.training:
                    # rpn loss
                    rpn_kwargs.update(
                        dict((k, new_rpn_ret[k]) for k in new_rpn_ret.keys()
                             if (k.startswith('rpn_cls_logits')
                                 or k.startswith('rpn_bbox_pred'))))
                    loss_rpn_cls, loss_rpn_bbox = rpn_heads.generic_rpn_losses(
                        **rpn_kwargs)
                    if cfg.FPN.FPN_ON:
                        for k, lvl in enumerate(
                                range(cfg.FPN.RPN_MIN_LEVEL,
                                      cfg.FPN.RPN_MAX_LEVEL + 1)):
                            return_dict['losses']['loss_rpn_cls_fpn%d' %
                                                  lvl] += loss_rpn_cls[k]
                            return_dict['losses']['loss_rpn_bbox_fpn%d' %
                                                  lvl] += loss_rpn_bbox[k]
                    else:
                        return_dict['losses']['loss_rpn_cls'] += loss_rpn_cls
                        return_dict['losses']['loss_rpn_bbox'] += loss_rpn_bbox

                    # bbox loss
                    loss_cls, loss_bbox, accuracy_cls = fast_rcnn_heads.fast_rcnn_losses(
                        cls_score,
                        bbox_pred,
                        new_rpn_ret['labels_int32'],
                        new_rpn_ret['bbox_targets'],
                        new_rpn_ret['bbox_inside_weights'],
                        new_rpn_ret['bbox_outside_weights'],
                        stage=i)

                    return_dict['losses']['loss_cls'] += loss_cls
                    return_dict['losses']['loss_bbox'] += loss_bbox
                    return_dict['metrics']['accuracy_cls'] += accuracy_cls

                return_dict['rois' + '_{}'.format(i)] = deepcopy(
                    new_rpn_ret['rois'])
                return_dict['cls_score' + '_{}'.format(i)] = cls_score.detach()
                return_dict['bbox_pred' + '_{}'.format(i)] = bbox_pred.detach()

                rpn_ret = new_rpn_ret.copy()

        return return_dict