예제 #1
0
    def get_predictor(cls):
        ''' load trained model'''

        with cls.lock:
            # check if model is already loaded
            if cls.predictor:
                return cls.predictor

            # create a mask r-cnn model
            mask_rcnn_model = ResNetFPNModel()

            try:
                model_dir = os.environ['SM_MODEL_DIR']
            except KeyError:
                model_dir = '/opt/ml/model'

            try:
                cls.pretrained_model = os.environ['PRETRAINED_MODEL']
            except KeyError:
                pass

            # file path to previoulsy trained mask r-cnn model
            latest_trained_model = ""
            model_search_path = os.path.join(model_dir, "model-*.index")
            for model_file in glob.glob(model_search_path):
                if model_file > latest_trained_model:
                    latest_trained_model = model_file

            trained_model = latest_trained_model[:-6]
            print(f'Using model: {trained_model}')

            # fixed resnet50 backbone weights
            cfg.BACKBONE.WEIGHTS = os.path.join(cls.pretrained_model)
            cfg.MODE_FPN = True
            cfg.MODE_MASK = True
            cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS
            finalize_configs(is_training=False)

            # Create an inference model
            # PredictConfig takes a model, input tensors and output tensors
            input_tensors = mask_rcnn_model.get_inference_tensor_names()[0]
            output_tensors = mask_rcnn_model.get_inference_tensor_names()[1]

            cls.predictor = OfflinePredictor(
                PredictConfig(model=mask_rcnn_model,
                              session_init=get_model_loader(trained_model),
                              input_names=input_tensors,
                              output_names=output_tensors))
            return cls.predictor
def init_predictor():
    register_coco(cfg.DATA.BASEDIR)
    MODEL = ResNetFPNModel()
    finalize_configs(is_training=False)

    predcfg = PredictConfig(
        model=MODEL,
        #session_init=SmartInit("/home/jetson/Documents/trained_model/500000_17/checkpoint"),
        session_init=SmartInit(
            "/home/jetson/Documents/trained_model/255000_04.01/checkpoint"),
        input_names=MODEL.get_inference_tensor_names()[0],
        output_names=MODEL.get_inference_tensor_names()[1])

    predictor = OfflinePredictor(predcfg)

    return predictor
예제 #3
0
def evaluate_rcnn(model_name, paper_arxiv_id, cfg_list, model_file):
    evaluator = COCOEvaluator(
        root=COCO_ROOT, model_name=model_name, paper_arxiv_id=paper_arxiv_id
    )
    category_id_to_coco_id = {
        v: k for k, v in COCODetection.COCO_id_to_category_id.items()
    }

    cfg.update_config_from_args(cfg_list)  # TODO backup/restore config
    finalize_configs(False)
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()
    predcfg = PredictConfig(
        model=MODEL,
        session_init=SmartInit(model_file),
        input_names=MODEL.get_inference_tensor_names()[0],
        output_names=MODEL.get_inference_tensor_names()[1],
    )
    predictor = OfflinePredictor(predcfg)

    def xyxy_to_xywh(box):
        box[2] -= box[0]
        box[3] -= box[1]
        return box

    df = get_eval_dataflow("coco_val2017")
    df.reset_state()
    for img, img_id in tqdm.tqdm(df, total=len(df)):
        results = predict_image(img, predictor)
        res = [
            {
                "image_id": img_id,
                "category_id": category_id_to_coco_id.get(
                    int(r.class_id), int(r.class_id)
                ),
                "bbox": xyxy_to_xywh([round(float(x), 4) for x in r.box]),
                "score": round(float(r.score), 3),
            }
            for r in results
        ]
        evaluator.add(res)
        if evaluator.cache_exists:
            break

    evaluator.save()
예제 #4
0
    parser.add_argument(
        '--benchmark',
        action='store_true',
        help="Benchmark the speed of the model + postprocessing")
    parser.add_argument(
        '--config',
        help="A list of KEY=VALUE to overwrite those defined in config.py",
        nargs='+')
    parser.add_argument('--compact', help='Save a model to .pb')
    parser.add_argument('--serving', help='Save a model to serving file')

    args = parser.parse_args()
    if args.config:
        cfg.update_args(args.config)
    register_coco(cfg.DATA.BASEDIR)  # add COCO datasets to the registry
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    if not tf.test.is_gpu_available():
        from tensorflow.python.framework import test_util
        assert get_tf_version_tuple() >= (1, 7) and test_util.IsMklEnabled(), \
            "Inference requires either GPU support or MKL support!"
    assert args.load
    finalize_configs(is_training=False)

    if args.predict or args.visualize:
        cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS

    if args.visualize:
        do_visualize(MODEL, args.load)
    else:
        predcfg = PredictConfig(
    # add green rectangle arround original picture that with failure
    height, width, channels = img.shape
    cv2.rectangle(img, (0, 0), (width, height),
                  color=(100, 220, 80),
                  thickness=5)

    viz = np.concatenate((img, final), axis=1)
    cv2.imwrite(
        "/home/jetson/tensorpack/examples/FasterRCNN/static/images/output.png",
        viz)
    logger.info("Inference output written to output.png")


if __name__ == '__main__':
    register_coco(cfg.DATA.BASEDIR)
    MODEL = ResNetFPNModel()
    finalize_configs(is_training=False)

    predcfg = PredictConfig(
        model=MODEL,
        session_init=SmartInit(
            "/home/jetson/Documents/trained_model/500000_17/checkpoint"),
        input_names=MODEL.get_inference_tensor_names()[0],
        output_names=MODEL.get_inference_tensor_names()[1])

    predictor = OfflinePredictor(predcfg)
    do_predict(
        predictor,
        "/home/jetson/tensorpack/examples/FasterRCNN/static/images/original.jpg"
    )  # this line can be commented out, but the FIRST reference after service start will take longer
예제 #6
0
    def get_predictor(cls):
        """load trained model"""

        with cls.lock:
            # check if model is already loaded
            if cls.predictor:
                return cls.predictor

            # create a mask r-cnn model
            mask_rcnn_model = ResNetFPNModel()

            try:
                model_dir = os.environ["SM_MODEL_DIR"]
            except KeyError:
                model_dir = "/opt/ml/model"

            try:
                resnet_arch = os.environ["RESNET_ARCH"]
            except KeyError:
                resnet_arch = "resnet50"

            # file path to previoulsy trained mask r-cnn model
            latest_trained_model = ""
            model_search_path = os.path.join(model_dir, "model-*.index")
            for model_file in glob.glob(model_search_path):
                if model_file > latest_trained_model:
                    latest_trained_model = model_file

            trained_model = latest_trained_model[:-6]
            print(f"Using model: {trained_model}")

            cfg.MODE_FPN = True
            cfg.MODE_MASK = True
            if resnet_arch == "resnet101":
                cfg.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 23, 3]
            else:
                cfg.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 6, 3]

            cfg_prefix = "CONFIG__"
            for key, value in dict(os.environ).items():
                if key.startswith(cfg_prefix):
                    attr_name = key[len(cfg_prefix) :]
                    attr_name = attr_name.replace("__", ".")
                    value = eval(value)
                    print(f"update config: {attr_name}={value}")
                    nested_var = cfg
                    attr_list = attr_name.split(".")
                    for attr in attr_list[0:-1]:
                        nested_var = getattr(nested_var, attr)
                    setattr(nested_var, attr_list[-1], value)

            cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS
            cfg.DATA.BASEDIR = "/data"
            cfg.DATA.TRAIN = "coco_train2017"
            cfg.DATA.VAL = "coco_val2017"
            register_coco(cfg.DATA.BASEDIR)
            finalize_configs(is_training=False)

            # Create an inference model
            # PredictConfig takes a model, input tensors and output tensors
            input_tensors = mask_rcnn_model.get_inference_tensor_names()[0]
            output_tensors = mask_rcnn_model.get_inference_tensor_names()[1]

            cls.predictor = OfflinePredictor(
                PredictConfig(
                    model=mask_rcnn_model,
                    session_init=get_model_loader(trained_model),
                    input_names=input_tensors,
                    output_names=output_tensors,
                )
            )
            return cls.predictor