def setUp(self): n_points_per_cluster = 250 np.random.seed(0) C1 = np.zeros((n_points_per_cluster, 3)) C2 = np.zeros((n_points_per_cluster, 3)) C3 = np.zeros((n_points_per_cluster, 3)) C4 = np.zeros((n_points_per_cluster, 3)) C5 = np.zeros((n_points_per_cluster, 3)) C6 = np.zeros((n_points_per_cluster, 3)) C1[:, 1:3] = ([-5, -2] + .8 * np.random.randn(n_points_per_cluster, 2)) C2[:, 1:3] = ([4, -1] + .1 * np.random.randn(n_points_per_cluster, 2)) C3[:, 1:3] = ([0, -2] + .2 * np.random.randn(n_points_per_cluster, 2)) C4[:, 1:3] = ([-2, 3] + .3 * np.random.randn(n_points_per_cluster, 2)) C5[:, 1:3] = ([3, -2] + 1.6 * np.random.randn(n_points_per_cluster, 2)) C6[:, 1:3] = ([5, 6] + 2 * np.random.randn(n_points_per_cluster, 2)) X = np.vstack( (C1[:, 1:3], C2[:, 1:3], C3[:, 1:3], C4[:, 1:3], C5[:, 1:3], C6[:, 1:3])) clust = OPTICS(min_samples=50, xi=.05, min_cluster_size=.05) # Run the fit clust.fit(X) self.tbhg = modeling.TBH() self.tbhg.optics = clust self.tbhg.locH = (C1, C2, C3, C4, C5, C6) # self.tbhg = TBHG(clust) pass
def test_build_hierarchy(self): tbhg = modeling.TBH() optics = OPTICS_() optics.cluster_hierarchy_ = [[0, 4], [6, 8], [5, 8], [8, 10], [0, 10]] optics.ordering_ = [x for x in range(11)] tbhg.optics = optics r = tbhg._build_tree() h = tbhg._build_hierarchy(r) for i in h: print(i)
def build_tbh(optics, locH): return modeling.TBH(optics, locH)
def build_tree(optics): tbhg = modeling.TBH() tbhg.optics = optics return tbhg._build_tree()
def build_hierarchy(optics): tbhg = modeling.TBH(optics) return tbhg.hierarchy