예제 #1
0
def CV_A_Model_FromSQL(tag, model, vocab1,vocab2,myconfig,nfold=5,downsample=True):

    df_all = dfmaker.get_train_dfs(tag,myconfig,downsample)
    df_Train, df_Test = dfmaker.GenerateTestTrain(df_all)
    
    #Test with cross-validation:
    modelmaker.model_cv(df_Train,model,vocab1,vocab2,nfold,downsample)
예제 #2
0
def CV_A_Model_FromSQL(tag,
                       model,
                       vocab1,
                       vocab2,
                       myconfig,
                       nfold=5,
                       downsample=True):

    df_all = dfmaker.get_train_dfs(tag, myconfig, downsample)
    df_Train, df_Test = dfmaker.GenerateTestTrain(df_all)

    #Test with cross-validation:
    modelmaker.model_cv(df_Train, model, vocab1, vocab2, nfold, downsample)
예제 #3
0
def Train_Final_Model(tag, model, vocab1,vocab2,myconfig,downsample=True):

    df_all = dfmaker.get_train_dfs(tag,myconfig)

    #Check that CV looks fine:
    print "Checking CV (nfold=2):"
    modelmaker.model_cv(df_all,model,vocab1,vocab2,2,downsample)

    #Train the actual model:
    print "Training final model:"
    trained_model,trained_vocab1,trained_vocab2 = modelmaker.model_trainer(df_all,model,vocab1,vocab2,downsample)

    return trained_model, trained_vocab1, trained_vocab2
예제 #4
0
def Train_Final_Model(tag, model, vocab1, vocab2, myconfig, downsample=True):

    df_all = dfmaker.get_train_dfs(tag, myconfig)

    #Check that CV looks fine:
    print "Checking CV (nfold=2):"
    modelmaker.model_cv(df_all, model, vocab1, vocab2, 2, downsample)

    #Train the actual model:
    print "Training final model:"
    trained_model, trained_vocab1, trained_vocab2 = modelmaker.model_trainer(
        df_all, model, vocab1, vocab2, downsample)

    return trained_model, trained_vocab1, trained_vocab2
예제 #5
0
파일: AnaFunc.py 프로젝트: rbtoner/Fanguard
def CV_A_Model_FromSQL(tag, model, vocab1,vocab2,myconfig,nfold=5,downsample=True):
    """K-fold CV a model for time and performance, calling from MySQL
    tag = tag name
    model = model object (sklearn) to train to
    vocab1 = Body vocab
    vocab2 = Tag vocab
    myconfig = config file for accessing MySQL database  
    nfold = number of folds for CV
    downsample = force spoiler and non-spoiler sets to have same size
    """    
    df_all = dfmaker.get_train_dfs(tag,myconfig,downsample)
    df_Train, df_Test = dfmaker.GenerateTestTrain(df_all)
    
    #Test with cross-validation:
    modelmaker.model_cv(df_Train,model,vocab1,vocab2,nfold,downsample)
예제 #6
0
파일: AnaFunc.py 프로젝트: rbtoner/Fanguard
def CV_A_Model(model, vocab1,vocab2,df,nfold=5,downsample=True):
    """K-fold CV a model for time and performance
    model = model object (sklearn) to train to
    vocab1 = Body vocab
    vocab2 = Tag vocab
    df = Dataframe to sample from
    nfold = number of folds for CV
    downsample = force spoiler and non-spoiler sets to have same size
    """    

    #Start time:
    start_time = time.time()

    #Test with cross-validation:
    modelmaker.model_cv(df,model,vocab1,vocab2,nfold,downsample)

    #How much time elapsed?
    print "Time elapsed:",(time.time() - start_time)
예제 #7
0
파일: AnaFunc.py 프로젝트: rbtoner/Fanguard
def Train_Final_Model(tag, model, vocab1,vocab2,myconfig,downsample=True):
    """Given a tag name, train a model WITH CROSS-VALIDATION
    tag = tag name
    model = model object (sklearn) to train to
    vocab1 = Body vocab
    vocab2 = Tag vocab
    myconfig = config file for accessing MySQL database
    downsample = force spoiler and non-spoiler sets to have same size
    """
    df_all = dfmaker.get_train_dfs(tag,myconfig)

    #Check that CV looks fine:
    print "Checking CV (nfold=2):"
    modelmaker.model_cv(df_all,model,vocab1,vocab2,2,downsample)

    #Train the actual model:
    print "Training final model:"
    trained_model,trained_vocab1,trained_vocab2 = modelmaker.model_trainer(df_all,model,vocab1,vocab2,downsample)

    return trained_model, trained_vocab1, trained_vocab2
예제 #8
0
def CV_A_Model(model, vocab1, vocab2, df, nfold=5, downsample=True):

    start_time = time.time()
    #Test with cross-validation:
    modelmaker.model_cv(df, model, vocab1, vocab2, nfold, downsample)
    print "Time elapsed:", (time.time() - start_time)
예제 #9
0
def CV_A_Model(model, vocab1,vocab2,df,nfold=5,downsample=True):

    start_time = time.time()
    #Test with cross-validation:
    modelmaker.model_cv(df,model,vocab1,vocab2,nfold,downsample)
    print "Time elapsed:",(time.time() - start_time)