init = model.non_initialized_variables() model.sess.run(init) print 'Total name :' print model.runID # nb_iterations = 500 mixed_data.adjust_split_size_to_batchsize(batch_size) nb_batches = mixed_data.nb_batches(batch_size) nb_epochs = 1 time_spent = [ 0 for _ in range(5)] for epoch in range(nb_epochs): for b in range(nb_batches): X_non_mix, X_mix, _ = mixed_data.get_batch(batch_size) t = time.time() c = model.train(X_mix, X_non_mix, learning_rate, b) t_f = time.time() time_spent = time_spent[1:] +[t_f-t] print 'Step #' ,b,' loss=', c ,' ETA = ', getETA(sum(time_spent)/float(np.count_nonzero(time_spent)) , nb_batches, b, nb_epochs, epoch) # print 'length of data =', X_non_mix.shape ,'step ', b+1, mixed_data.datasets[0].index_item_split, mixed_data.selected_split_size(),getETA(sum(time_spent)/float(np.count_nonzero(time_spent)), nb_batches, b, nb_epochs, epoch) if b%20 == 0: #cost_valid < cost_valid_min: print 'DAS model saved at iteration number ', nb_batches*epoch + b,' with cost = ', c model.save(b)
mixed_data.adjust_split_size_to_batchsize(batch_size) nb_batches = mixed_data.nb_batches(batch_size) nb_epochs = 40 time_spent = [0 for _ in range(5)] print 'NB BATCHES =', nb_batches print 'NB ITERATIONS =', nb_batches * nb_epochs print 'NB SAVE = ', (nb_batches * nb_epochs) / 20 for epoch in range(nb_epochs): for b in range(nb_batches): step = nb_batches * epoch + b X_non_mix, X_mix, Ind = mixed_data.get_batch(batch_size) t = time.time() c = model.train(X_mix, X_non_mix, learning_rate, step, ind_train=Ind) t_f = time.time() time_spent = time_spent[1:] + [t_f - t] print 'Step #', step, ' loss=', c, ' ETA = ', getETA( sum(time_spent) / float(np.count_nonzero(time_spent)), nb_batches, b, nb_epochs, epoch) # print 'length of data =', X_non_mix.shape ,'step ', b+1, mixed_data.datasets[0].index_item_split, mixed_data.selected_split_size(),getETA(sum(time_spent)/float(np.count_nonzero(time_spent)), nb_batches, b, nb_epochs, epoch) if step % 20 == 0: #cost_valid < cost_valid_min: print 'DAS model saved at iteration number ', step, ' with cost = ', c model.save(nb_batches * epoch + b) mixed_data.select_split(1) x_non_test, x_test, _ = mixed_data.get_only_first_items(8) model.test_prediction(x_test, x_non_test, step) mixed_data.select_split(0)
males = H5PY_RW() males.open_h5_dataset('test_raw.h5py', subset=males_keys(H5_dico)) males.set_chunk(5 * 4 * 512) males.shuffle() print 'Male voices loaded: ', males.length(), ' items' fem = H5PY_RW() fem.open_h5_dataset('test_raw.h5py', subset=females_keys(H5_dico)) fem.set_chunk(5 * 4 * 512) fem.shuffle() print 'Female voices loaded: ', fem.length(), ' items' Mixer = Mixer([males, fem], with_mask=False, with_inputs=True) adapt_model = Adapt() print 'Model DAS created' adapt_model.init() cost_valid_min = 1e10 Mixer.select_split(0) learning_rate = 0.005 for i in range(config.max_iterations): X_in, X_mix, Ind = Mixer.get_batch(1) c = adapt_model.train(X_mix, X_in, learning_rate, i) print 'Step #', i, ' ', c if i % 20 == 0: #cost_valid < cost_valid_min: print 'DAS model saved at iteration number ', i, ' with cost = ', c adapt_model.save(i)
folder = 'DAS_train_front' model = Adapt(config_model=config_model, pretraining=False) model.create_saver() path = os.path.join(config.workdir, 'floydhub_model', "pretraining") # path = os.path.join(config.log_dir, "pretraining") model.restore_model(path, full_id) from models.das import DAS model.connect_only_front_to_separator(DAS) init = model.non_initialized_variables() # Model creation # Pretraining the model nb_iterations = 1000 #initialize the model model.sess.run(init) for i in range(nb_iterations): X_in, X_mix, Ind = mixed_data.get_batch(batch_size) c = model.train(X_mix, X_in, learning_rate, i, ind_train=Ind) print 'Step #', i, ' loss=', c if i % 20 == 0: #cost_valid < cost_valid_min: print 'DAS model saved at iteration number ', i, ' with cost = ', c model.save(i)
model.sess.run(init) print 'Total name :' print model.runID # nb_iterations = 500 mixed_data.adjust_split_size_to_batchsize(batch_size) nb_batches = mixed_data.nb_batches(batch_size) nb_epochs = 1 time_spent = [0 for _ in range(5)] for epoch in range(nb_epochs): for b in range(nb_batches): X_non_mix, X_mix, _ = mixed_data.get_batch(batch_size) t = time.time() c = model.train(X_mix, X_non_mix, learning_rate, nb_batches * epoch + b) t_f = time.time() time_spent = time_spent[1:] + [t_f - t] print 'Step #', b, ' loss=', c, ' ETA = ', getETA( sum(time_spent) / float(np.count_nonzero(time_spent)), nb_batches, b, nb_epochs, epoch) # print 'length of data =', X_non_mix.shape ,'step ', b+1, mixed_data.datasets[0].index_item_split, mixed_data.selected_split_size(),getETA(sum(time_spent)/float(np.count_nonzero(time_spent)), nb_batches, b, nb_epochs, epoch) if b % 20 == 0: #cost_valid < cost_valid_min: print 'DAS model saved at iteration number ', nb_batches * epoch + b, ' with cost = ', c model.save(b)