def deepbase_resnet101(num_classes=1000, pretrained=None, norm_type='batchnorm', **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on Places """ model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, deep_base=True, norm_type=norm_type) model = ModuleHelper.load_model(model, pretrained=pretrained) return model
def resnet34(num_classes=1000, pretrained=None, norm_type='batchnorm', **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on Places """ model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, deep_base=False, norm_type=norm_type) model = ModuleHelper.load_model(model, pretrained=pretrained) return model
def resnet50(num_classes=1000, pretrained=None, norm_type='batchnorm', **kwargs): # def resnet50(num_classes=1000, pretrained=None, norm_type='encsync_batchnorm', **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on Places # """ # print("entered") # input() model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, deep_base=False, norm_type=norm_type) model = ModuleHelper.load_model(model, pretrained=pretrained) return model