def forward(self, x):
     W1, b1 = self.params['W1'], self.params['b1']
     W2, b2 = self.params['W2'], self.params['b2']
     a, fc_cache1 = affine_forward(x, W1, b1)
     a2, relu_cache = relu_forward(a)
     out, fc_cache2 = affine_forward(a2, W2, b2)
     self.cache = (fc_cache1, relu_cache, fc_cache2)
     return out
예제 #2
0
 def forward(self, x):
     W1, b1 = self.params['W1'], self.params['b1']
     W2, b2 = self.params['W2'], self.params['b2']
     a, fc_cache1 = affine_forward(x, W1, b1)
     a2, relu_cache = relu_forward(a)
     out, fc_cache2 = affine_forward(a2, W2, b2)
     self.cache = (fc_cache1, relu_cache, fc_cache2)
     return out
    def forward(self, x):
        W, b = self.params['W'], self.params['b']
        sigma, mu = self.params['sigma'], self.params['mu']
        a, fc_cache = affine_forward(x, W, b)
        a2, sigmoid_cache = sigmoid_forward(a)
        out, scale_cache = scale_shift_forward(a2, sigma, mu)

        self.cache = (fc_cache, sigmoid_cache, scale_cache)
        return out
예제 #4
0
    def forward(self, x):
        W, b = self.params['W'], self.params['b']
        sigma, mu = self.params['sigma'], self.params['mu']
        a, fc_cache = affine_forward(x, W, b)
        a2, sigmoid_cache = sigmoid_forward(a)
        out, scale_cache = scale_shift_forward(a2, sigma, mu)

        self.cache = (fc_cache, sigmoid_cache, scale_cache)
        return out
 def forward(self, x):
     W = self.params['W']
     b = self.params['b']
     out, self.cache = affine_forward(x, W, b)
     return out
예제 #6
0
 def forward(self, x):
     W = self.params['W']
     b = self.params['b']
     out, self.cache = affine_forward(x, W, b)
     return out