def autoshape(self): # add autoShape module print('Adding autoShape... ') m = autoShape(self) # wrap model copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes return m
def autoshape(self): # add autoShape module print("Adding autoShape... ") m = autoShape(self) # wrap model copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes return m
def load_model(self): m = Model(cfg=self.cfg, nc=self.nc) ckpt = torch.load(self.weights)['model'] # load checkpoint m.load_state_dict(ckpt.state_dict()) m.names = ckpt.names #load detections params self._detections_params() autoShape.iou = self.iou_thr autoShape.conf = self.conf #sacado de ultralytics/yolo m = m.fuse() model = autoShape(m) copy_attr(model, m, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes self.model = model self.model.cuda() #fp32 to fp16 if self.half: self.model.half()