def setup(self, session): try: if self.args.model_name == 'DXN': self.model = dexined(self.args) else: print_error("Error setting model, {}".format( self.args.model_name)) if self.args.trained_model_dir is None: meta_model_file = os.path.join( self.args.checkpoint_dir, os.path.join( self.args.model_name + '_' + self.args.train_dataset, os.path.join( 'train', '{}-{}'.format(self.args.model_name, self.args.test_snapshot)))) else: meta_model_file = os.path.join( self.args.checkpoint_dir, os.path.join( self.args.model_name + '_' + self.args.train_dataset, os.path.join( self.args.trained_model_dir, '{}-{}'.format(self.args.model_name, self.args.test_snapshot)))) saver = tf.train.Saver() saver.restore(session, meta_model_file) print_info( 'Done restoring DexiNed model from {}'.format(meta_model_file)) except Exception as err: print_error( 'Error setting up DexiNed traied model, {}'.format(err))
def setup(self): try: if self.args.model_name=='DXN': self.model = dexined(self.args) else: print_error("Error setting model, {}".format(self.args.model_name)) print_info("DL model Set") except Exception as err: print_error("Error setting up DL model, {}".format(err)) self.init=False