def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.model_manager = ModelManager(configer) self.test_loader = TestDataLoader(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.gan_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.gan_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model()
class ImageTranslatorTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.model_manager = ModelManager(configer) self.test_loader = TestDataLoader(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.gan_net = None self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.gan_net.eval() def test(self, test_dir, out_dir): imgA_dir = os.path.join(test_dir, 'imageA') imgB_dir = os.path.join(test_dir, 'imageB') if os.path.exists(imgA_dir): Log.info('ImageA Dir: {}'.format(imgA_dir)) for data_dict in self.test_loader.get_testloader( test_dir=imgA_dir): new_data_dict = dict(imgA=data_dict['img']) with torch.no_grad(): out_dict = self.gan_net(new_data_dict, testing=True) meta_list = DCHelper.tolist(data_dict['meta']) for key, value in out_dict.items(): for i in range(len(value)): img_bgr = self.blob_helper.tensor2bgr(value[i]) img_path = meta_list[i]['img_path'] Log.info('Image Path: {}'.format(img_path)) filename = img_path.rstrip().split('/')[-1] ImageHelper.save(img_bgr, os.path.join(out_dir, key, filename)) if os.path.exists(imgB_dir): Log.info('ImageB Dir: {}'.format(imgB_dir)) for data_dict in self.test_loader.get_testloader( test_dir=imgB_dir): new_data_dict = dict(imgB=data_dict['img']) with torch.no_grad(): out_dict = self.gan_net(new_data_dict, testing=True) meta_list = DCHelper.tolist(data_dict['meta']) for key, value in out_dict.items(): for i in range(len(value)): img_bgr = self.blob_helper.tensor2bgr(value[i]) img_path = meta_list[i]['img_path'] Log.info('Image Path: {}'.format(img_path)) filename = img_path.rstrip().split('/')[-1] ImageHelper.save(img_bgr, os.path.join(out_dir, key, filename))
class FaceGAN(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.gan_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.optimizer, self.scheduler = Trainer.init( self._get_parameters(), self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() def _get_parameters(self): return self.gan_net.parameters() def train(self): """ Train function of every epoch during train phase. """ self.gan_net.train() start_time = time.time() # Adjust the learning rate after every epoch. for i, data_dict in enumerate(self.train_loader): Trainer.update(self, solver_dict=self.configer.get('solver')) inputs = data_dict['imgA'] self.data_time.update(time.time() - start_time) # Forward pass. out_dict = self.gan_net(inputs) # outputs = self.module_utilizer.gather(outputs) loss = out_dict['loss'].mean() self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.gan_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['imgA'] with torch.no_grad(): # Forward pass. out_dict = self.gan_net(data_dict) # Compute the loss of the val batch. self.val_losses.update(out_dict['loss'].mean().item(), inputs.size(0)) meta_list = DCHelper.tolist(data_dict['meta']) probe_features = [] gallery_features = [] probe_labels = [] gallery_labels = [] for idx in range(len(meta_list)): gallery_features.append(out_dict['featB'][idx].cpu().numpy()) gallery_labels.append(meta_list[idx]['labelB']) probe_features.append(out_dict['featA'][idx].cpu().numpy()) probe_labels.append(meta_list[idx]['labelA']) rank_1, vr_far_001 = FaceGANTest.decode(probe_features, gallery_features, probe_labels, gallery_labels) Log.info('Rank1 accuracy is {}'.format(rank_1)) Log.info('VR@FAR=0.1% accuracy is {}'.format(vr_far_001)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.gan_net.train()
class FaceGANTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.model_manager = ModelManager(configer) self.test_loader = TestDataLoader(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.gan_net = None self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.gan_net.eval() def test(self, test_dir, out_dir): gallery_file_list = '*_gallery_*.txt' probe_file_list = '*_probe_*.txt' gallery_file_list = glob.glob(test_dir + '/' + gallery_file_list) probe_file_list = glob.glob(test_dir + '/' + probe_file_list) # remove *_dev.txt file in both list gallery_file_list = sorted(gallery_file_list) probe_file_list = sorted(probe_file_list) rank1_acc = [] vr_acc = [] for i in range(len(gallery_file_list)): probe_features = [] gallery_features = [] probe_names = [] gallery_names = [] Log.info('Gallery File: {}'.format(gallery_file_list[i])) for data_dict in self.test_loader.get_testloader( list_path=gallery_file_list[i]): new_data_dict = dict(gallery=data_dict['img']) out_dict = self.gan_net(new_data_dict) meta_list = DCHelper.tolist(data_dict['meta']) for idx in range(len(out_dict['feat'])): gallery_features.append( out_dict['feat'][idx].cpu().numpy()) gallery_names.append( meta_list[idx]['img_path'].split("/")[-2]) Log.info('Probe File: {}'.format(probe_file_list[i])) for data_dict in self.test_loader.get_testloader( list_path=probe_file_list[i]): new_data_dict = dict(probe=data_dict['img']) out_dict = self.gan_net(new_data_dict) meta_list = DCHelper.tolist(data_dict['meta']) for key, value in out_dict.item(): if 'feat' in key: for idx in range(len(value)): probe_features.append(value[idx].cpu().numpy()) probe_names.append( meta_list[idx]['img_path'].split("/")[-2]) continue else: for idx in range(len(value)): img_bgr = self.blob_helper.tensor2bgr(value[idx]) filename = meta_list[idx]['img_path'].rstrip( ).split('/')[-1] ImageHelper.save( img_bgr, os.path.join(out_dir, key, filename)) probe_features = np.array(probe_features) gallery_features = np.array(gallery_features) score = cosine_similarity(gallery_features, probe_features).T r_acc, tpr = self.compute_metric(score, probe_names, gallery_names) # print('score={}, probe_names={}, gallery_names={}'.format(score, probe_names, gallery_names)) rank1_acc.append(r_acc) vr_acc.append(tpr) avg_r_a = np.mean(np.array(rank1_acc)) std_r_a = np.std(np.array(rank1_acc)) avg_v_a = np.mean(np.array(vr_acc)) std_v_a = np.std(np.array(vr_acc)) # avg_vr_acc = sum(vr_acc)/(len(vr_acc) + 1e-5) print() print('=====================================================') print('Final Rank1 accuracy is', avg_r_a * 100, "% +", std_r_a) print('Final VR@FAR=0.1% accuracy is', avg_v_a * 100, "% +", std_v_a) print('=====================================================') print() return avg_r_a, std_r_a, avg_v_a, std_v_a def compute_metric(self, score, probe_names, gallery_names): # print('score.shape =', score.shape) # print('probe_names =', np.array(probe_names).shape) # print('gallery_names =', np.array(gallery_names).shape) print('===> compute metrics') # print(probe_names[1], type(probe_names[1])) # exit() label = np.zeros_like(score) maxIndex = np.argmax(score, axis=1) # print('len = ', len(maxIndex)) count = 0 for i in range(len(maxIndex)): probe_names_repeat = np.repeat([probe_names[i]], len(gallery_names), axis=0).T # compare two string list result = np.equal(probe_names_repeat, gallery_names) * 1 # result = np.core.defchararray.equal(probe_names_repeat, gallery_names) * 1 # find the index of image in the gallery that has the same name as probe image # print(result) # print('++++++++++++++++++++++++++++++++=') index = np.nonzero(result == 1) # if i == 10: # exit() assert len(index[0]) == 1 label[i][index[0][0]] = 1 # find the max similarty score in gallery has the same name as probe image if np.equal(int(probe_names[i]), int(gallery_names[maxIndex[i]])): count += 1 else: pass # print(probe_img_list[i], gallery_img_list[ind]) r_acc = count / (len(probe_names) + 1e-5) fpr, tpr, thresholds = roc_curve(label.flatten(), score.flatten()) print("In sub_experiment", label.size(0), 'count of true label :', count) print('rank1 accuracy =', r_acc) print('VR@FAR=0.1% accuracy =', tpr[fpr <= 0.001][-1]) # plot_roc(fpr, tpr, thresholds, g_count) return r_acc, tpr[fpr <= 0.001][-1]
class ImageTranslatorTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.model_manager = ModelManager(configer) self.test_loader = TestDataLoader(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.gan_net = None self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.gan_net.eval() def test(self, test_dir, out_dir): if self.configer.exists('test', 'mode') and self.configer.get( 'test', 'mode') == 'nir2vis': jsonA_path = os.path.join( self.configer.get('test', 'test_dir'), 'val_label{}A.json'.format(self.configer.get('data', 'tag'))) test_loader_A = self.test_loader.get_testloader( json_path=jsonA_path) if os.path.exists(jsonA_path) else None jsonB_path = os.path.join( self.configer.get('test', 'test_dir'), 'val_label{}B.json'.format(self.configer.get('data', 'tag'))) test_loader_B = self.test_loader.get_testloader( json_path=jsonB_path) if os.path.exists(jsonB_path) else None elif self.configer.exists('test', 'mode') and self.configer.get( 'test', 'mode') == 'pix2pix': imgA_dir = os.path.join(test_dir, 'imageA') test_loader_A = self.test_loader.get_testloader( test_dir=imgA_dir) if os.path.exists(imgA_dir) else None test_loader_B = None else: imgA_dir = os.path.join(test_dir, 'imageA') test_loader_A = self.test_loader.get_testloader( test_dir=imgA_dir) if os.path.exists(imgA_dir) else None imgB_dir = os.path.join(test_dir, 'imageB') test_loader_B = self.test_loader.get_testloader( test_dir=imgB_dir) if os.path.exists(imgB_dir) else None if test_loader_A is not None: for data_dict in test_loader_A: new_data_dict = dict(imgA=data_dict['img']) with torch.no_grad(): out_dict = self.gan_net(new_data_dict, testing=True) meta_list = DCHelper.tolist(data_dict['meta']) for key, value in out_dict.items(): for i in range(len(value)): img_bgr = self.blob_helper.tensor2bgr(value[i]) img_path = meta_list[i]['img_path'] Log.info('Image Path: {}'.format(img_path)) # filename = '_'.join(img_path.rstrip().split('/')[-2:]) img_bgr = ImageHelper.resize( img_bgr, target_size=self.configer.get('test', 'out_size'), interpolation='linear') ImageHelper.save( img_bgr, os.path.join(out_dir, key, meta_list[i]['filename'])) if test_loader_B is not None: for data_dict in test_loader_B: new_data_dict = dict(imgB=data_dict['img']) with torch.no_grad(): out_dict = self.gan_net(new_data_dict, testing=True) meta_list = DCHelper.tolist(data_dict['meta']) for key, value in out_dict.items(): for i in range(len(value)): img_bgr = self.blob_helper.tensor2bgr(value[i]) img_path = meta_list[i]['img_path'] Log.info('Image Path: {}'.format(img_path)) # filename = img_path.rstrip().split('/')[-1] # filename = '_'.join(img_path.rstrip().split('/')[-2:]) img_bgr = ImageHelper.resize( img_bgr, target_size=self.configer.get('test', 'out_size'), interpolation='linear') ImageHelper.save( img_bgr, os.path.join(out_dir, key, meta_list[i]['filename']))
class ImageTranslator(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.gan_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.optimizer_G, self.scheduler_G = Trainer.init( self._get_parameters()[0], self.configer.get('solver')) self.optimizer_D, self.scheduler_D = Trainer.init( self._get_parameters()[1], self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() def _get_parameters(self): params_G = [] params_D = [] params_dict = dict(self.gan_net.named_parameters()) for key, value in params_dict.items(): if 'G' not in key: params_D.append(value) else: params_G.append(value) return params_G, params_D def train(self): """ Train function of every epoch during train phase. """ self.gan_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.scheduler_G.step(self.runner_state['epoch']) self.scheduler_D.step(self.runner_state['epoch']) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['imgA'] self.data_time.update(time.time() - start_time) # Forward pass. out_dict = self.gan_net(data_dict) # outputs = self.module_utilizer.gather(outputs) self.optimizer_G.zero_grad() loss_G = out_dict['loss_G'].mean() loss_G.backward() self.optimizer_G.step() self.optimizer_D.zero_grad() loss_D = out_dict['loss_D'].mean() loss_D.backward() self.optimizer_D.step() loss = loss_G + loss_D self.train_losses.update(loss.item(), inputs.size(0)) # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), [ RunnerHelper.get_lr(self.optimizer_G), RunnerHelper.get_lr(self.optimizer_D) ], batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.gan_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['imgA'] with torch.no_grad(): # Forward pass. out_dict = self.gan_net(data_dict) # Compute the loss of the val batch. self.val_losses.update( out_dict['loss_G'].mean().item() + out_dict['loss_D'].mean().item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.gan_net.train()
class FaceGANTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.model_manager = ModelManager(configer) self.test_loader = TestDataLoader(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.gan_net = None self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.gan_net.eval() def test(self, test_dir, out_dir): if self.configer.exists('test', 'mode') and self.configer.get( 'test', 'mode') == 'nir2vis': jsonA_path = os.path.join( test_dir, 'val_label{}A.json'.format(self.configer.get('data', 'tag'))) test_loader_A = self.test_loader.get_testloader( json_path=jsonA_path) if os.path.exists(jsonA_path) else None jsonB_path = os.path.join( test_dir, 'val_label{}B.json'.format(self.configer.get('data', 'tag'))) test_loader_B = self.test_loader.get_testloader( json_path=jsonB_path) if os.path.exists(jsonB_path) else None else: test_loader_A, test_loader_B = None, None Log.error('Test Mode not Exists!') exit(1) assert test_loader_A is not None and test_loader_B is not None probe_features = [] gallery_features = [] probe_labels = [] gallery_labels = [] for data_dict in test_loader_A: new_data_dict = dict(imgA=data_dict['img']) with torch.no_grad(): out_dict = self.gan_net(new_data_dict, testing=True) meta_list = DCHelper.tolist(data_dict['meta']) for idx in range(len(meta_list)): probe_features.append(out_dict['featA'][idx].cpu().numpy()) probe_labels.append(meta_list[idx]['label']) for key, value in out_dict.items(): for i in range(len(value)): if 'feat' in key: continue img_bgr = self.blob_helper.tensor2bgr(value[i]) img_path = meta_list[i]['img_path'] Log.info('Image Path: {}'.format(img_path)) img_bgr = ImageHelper.resize(img_bgr, target_size=self.configer.get( 'test', 'out_size'), interpolation='linear') ImageHelper.save( img_bgr, os.path.join(out_dir, key, meta_list[i]['filename'])) for data_dict in test_loader_B: new_data_dict = dict(imgB=data_dict['img']) with torch.no_grad(): out_dict = self.gan_net(new_data_dict, testing=True) meta_list = DCHelper.tolist(data_dict['meta']) for idx in range(len(meta_list)): gallery_features.append(out_dict['feat'][idx].cpu().numpy()) gallery_labels.append(meta_list[idx]['label']) for key, value in out_dict.items(): for i in range(len(value)): if 'feat' in key: continue img_bgr = self.blob_helper.tensor2bgr(value[i]) img_path = meta_list[i]['img_path'] Log.info('Image Path: {}'.format(img_path)) img_bgr = ImageHelper.resize(img_bgr, target_size=self.configer.get( 'test', 'out_size'), interpolation='linear') ImageHelper.save( img_bgr, os.path.join(out_dir, key, meta_list[i]['filename'])) r_acc, tpr = self.decode(probe_features, gallery_features, probe_labels, gallery_labels) Log.info('Final Rank1 accuracy is {}'.format(r_acc)) Log.info('Final VR@FAR=0.1% accuracy is {}'.format(tpr)) @staticmethod def decode(probe_features, gallery_features, probe_labels, gallery_labels): probe_features = np.array(probe_features) gallery_features = np.array(gallery_features) score = cosine_similarity(gallery_features, probe_features).T # print('score.shape =', score.shape) # print('probe_names =', np.array(probe_names).shape) # print('gallery_names =', np.array(gallery_names).shape) print('===> compute metrics') # print(probe_names[1], type(probe_names[1])) # exit() label = np.zeros_like(score) maxIndex = np.argmax(score, axis=1) # print('len = ', len(maxIndex)) count = 0 for i in range(len(maxIndex)): probe_names_repeat = np.repeat([probe_labels[i]], len(gallery_labels), axis=0).T # compare two string list result = np.equal(probe_names_repeat, gallery_labels) * 1 # result = np.core.defchararray.equal(probe_names_repeat, gallery_names) * 1 # find the index of image in the gallery that has the same name as probe image # print(result) # print('++++++++++++++++++++++++++++++++=') index = np.nonzero(result == 1) # if i == 10: # exit() assert len(index[0]) == 1 label[i][index[0][0]] = 1 # find the max similarty score in gallery has the same name as probe image if np.equal(int(probe_labels[i]), int(gallery_labels[maxIndex[i]])): count += 1 else: pass # print(probe_img_list[i], gallery_img_list[ind]) r_acc = count / (len(probe_labels) + 1e-5) fpr, tpr, thresholds = roc_curve(label.flatten(), score.flatten()) # print("In sub_experiment", label.size(0), 'count of true label :', count) # print('rank1 accuracy =', r_acc) # print('VR@FAR=0.1% accuracy =', tpr[fpr <= 0.001][-1]) # plot_roc(fpr, tpr, thresholds, g_count) return r_acc, tpr[fpr <= 0.001][-1]