def __init__(self, model_dir, batch_size=8192, epochs=50, lr=1e-3, early_stop=10, dropout=0.5, overwrite=True, **kwargs): self.model_manager = ModelManager(model_dir) self.ckpt_path = os.path.join(self.model_manager.path_name, 'ckpt') self.batch_size = batch_size self.epochs = epochs self.lr = lr self.early_stop = early_stop self.dropout = dropout self.user_list = load_np_array(CONFIG.user_list_file) self.item_list = load_np_array(CONFIG.movie_list_file) tf.reset_default_graph() self.model = NeuralCF(len(self.user_list), len(self.item_list), **kwargs) self.sess = None self.saver = None self.global_step = tf.Variable(0, trainable=False) with tf.variable_scope("Optimizer"): params = tf.trainable_variables() gradients = tf.gradients(self.model.loss, params) clipped_gradients, _ = tf.clip_by_global_norm(gradients, 5.0) optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.apply_gradients( zip(clipped_gradients, params), global_step=self.global_step) self.create_or_load_model(overwrite)
def make_profiles(overwrite=False): def parse_profile(_id, _type): file = os.path.join(CONFIG.data_path, _type, _id, 'analysis', 'profile.json') if not os.path.exists(file): return [] profile = load_json_file(file) result = [] for target, value in profile.items(): for sentiment, val in value.items(): for description, sentences in val.items(): result.extend([(target, description, sentiment)] * len(sentences)) return result if not overwrite and os.path.exists(CONFIG.user_profile_file): user_profile = load_json_file(CONFIG.user_profile_file) else: users = load_np_array(CONFIG.user_list_file) user_profile = list(map(lambda x: parse_profile(x, 'user'), users)) save_json_file(CONFIG.user_profile_file, user_profile) if not overwrite and os.path.exists(CONFIG.movie_profile_file): movie_profile = load_json_file(CONFIG.movie_profile_file) else: movies = load_np_array(CONFIG.movie_list_file) movie_profile = list(map(lambda x: parse_profile(x, 'subject'), movies)) save_json_file(CONFIG.movie_profile_file, movie_profile) return user_profile, movie_profile
def get_rate_matrix(user_th=5, mode='rate', overwrite=False): if not overwrite and os.path.exists(CONFIG.rate_record_all): try: user_list = load_np_array(CONFIG.user_list_file) movie_list = load_np_array(CONFIG.movie_list_file) rate_matrix = load_np_array(CONFIG.rate_matrix_file) return user_list, movie_list, rate_matrix except: pass user_index_dict = dict() user_list = [] user_index = 0 movie_index_dict = dict() movie_list = [] movie_index = 0 users = os.listdir(CONFIG.user_path) records = [] for user in users: collect_file = os.path.join(CONFIG.user_path, user, 'collect.json') try: collects = load_json_file(collect_file) except: collects = [] if mode == 'comment': collects = list( filter(lambda x: x['comment'] != '' and x["rate"] != 0, collects)) elif mode == 'rate': collects = list(filter(lambda x: x["rate"] != 0, collects)) if len(collects) < user_th: continue user_index_dict[user] = user_index user_list.append(user) user_index += 1 # user_count[user] = len(collects) for item in collects: if mode == 'bool': value = 1 else: value = item['rate'] movie = item['movie_id'] if movie not in movie_index_dict: movie_index_dict[movie] = movie_index movie_list.append(movie) movie_index += 1 date = item["date"] row = user_index_dict[user] col = movie_index_dict[movie] # movie_count[movie] = movie_count.get(movie, 0) + 1 records.append((row, col, value, date)) write_lines(CONFIG.rate_record_all, records, lambda x: '%s %s %d %s' % (x[0], x[1], x[2], x[3])) rows, cols, values, dates = list(zip(*records)) rate_matrix = coo_matrix((values, (rows, cols)), shape=(user_index, movie_index)).todense() save_np_array(CONFIG.rate_matrix_file, rate_matrix) save_np_array(CONFIG.user_list_file, user_list) save_np_array(CONFIG.movie_list_file, movie_list) return user_list, movie_list, rate_matrix
def make_tags(overwrite=False): def parse_movie_tags(movie): info_file = os.path.join(CONFIG.movie_path, movie, 'info.json') if not os.path.exists(info_file): return [] info = load_json_file(info_file) return info.get("genres", []) def parse_user_tags(user): collect_profile_file = os.path.join(CONFIG.user_path, user, 'profile', 'collect_distribution.json') if not os.path.exists(collect_profile_file): return [] collect_profile = load_json_file(collect_profile_file) tag_distribution = collect_profile.get("type", {}) tags = list( itertools.chain.from_iterable( [[tag for _ in range(freq)] for tag, freq in tag_distribution.items()])) return tags if not overwrite and os.path.exists(CONFIG.user_tags_file): user_tags = load_json_file(CONFIG.user_tags_file) else: users = load_np_array(CONFIG.user_list_file) user_tags = list(map(parse_user_tags, users)) save_json_file(CONFIG.user_tags_file, user_tags) if not overwrite and os.path.exists(CONFIG.movie_tags_file): movie_tags = load_json_file(CONFIG.movie_tags_file) else: movies = load_np_array(CONFIG.movie_list_file) movie_tags = list(map(parse_movie_tags, movies)) save_json_file(CONFIG.movie_tags_file, movie_tags) if not overwrite and os.path.exists(CONFIG.tag_word_list): tag_words = read_lines(CONFIG.tag_word_list, lambda x: x.strip()) else: tag_words = set(itertools.chain.from_iterable(user_tags + movie_tags)) write_lines(CONFIG.tag_word_list, tag_words) return user_tags, movie_tags, tag_words
def get_all_comments_and_reviews(): users = load_np_array(CONFIG.user_list_file) movies = load_np_array(CONFIG.movie_list_file) user_comment = [] user_review = [] movie_comment = [] movie_review = [] for user in users: try: review = load_json_file( os.path.join(CONFIG.user_path, user, 'review', 'review.json')) except Exception as e: print(e) review = [] try: comment = load_json_file( os.path.join(CONFIG.user_path, user, 'collect', 'collect.json')) except Exception as e: print(e) comment = [] review = [(x["content"], x["rate"]) for x in review if len(x) > 0 and x["rate"] > 0] comment = [(x["comment"], x["rate"]) for x in comment if x["rate"] > 0 and x["comment"].strip() != ""] user_review.extend(review) user_comment.extend(comment) print('user: comment: %d, review: %d' % (len(user_comment), len(user_review))) for movie in movies: review_folder = os.path.join(CONFIG.movie_path, movie, 'reviews') review = [] if os.path.exists(review_folder): files = [ os.path.join(review_folder, x) for x in os.listdir(review_folder) if x.endswith('0.json') ] for file in files: data = load_json_file(file) review.extend([(x["content"], x["rating"]["value"]) for x in data['reviews'] if x["rating"]["value"] > 0]) movie_review.extend(review) comment_folder = os.path.join(CONFIG.movie_path, movie, 'comments') comment = [] if os.path.exists(comment_folder): files = [ os.path.join(comment_folder, x) for x in os.listdir(comment_folder) if x.endswith('0.json') ] for file in files: data = load_json_file(file) comment.extend([(x["content"], x["rating"]["value"]) for x in data['comments'] if x["rating"]["value"] > 0]) movie_comment.extend(comment) print('movie: comment: %d, review: %d' % (len(movie_comment), len(movie_review))) comment_rate = user_comment + movie_comment review_rate = user_review + movie_review save_json_file(CONFIG.comment_rate_file, comment_rate) save_json_file(CONFIG.review_rate_file, review_rate)