def __init__(self, opt): super(DddLoss, self).__init__() self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() self.crit_reg = L1Loss() self.crit_kp = RegWeightedL1Loss() self.crit_rot = BinRotLoss() self.opt = opt
def __init__(self, opt): super(DddLoss, self).__init__() self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() self.crit_reg = L1Loss() self.crit_rot = BinRotLoss() self.opt = opt self.emb_scale = 1
def __init__(self, opt): super(DddLoss, self).__init__() self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() self.crit_reg = L1Loss() self.crit_rot = BinRotLoss() self.dept_reg = ConfidenceLoss() self.opt = opt
def __init__(self, opt): super(Det3dLoss, self).__init__() print("Using MSE loss for clasification = ", opt.mse_loss) self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() self.crit_view_side = CrossEntropyLossWMask() self.crit_view_front_rear = CrossEntropyLossWMask() self.crit_reg = L1Loss() self.opt = opt
def __init__(self, opt): super(DddLoss, self).__init__() self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() self.crit_reg = L1Loss() self.crit_rot = BinRotLoss() self.depth_reg = L2Loss() self.dim_reg = L2Loss() self.vec_reg = L1Loss_ver() self.opt = opt
def build_loss_criterion(cfg): losses = cfg.TRAIN.losses weight_classes = cfg.DATASET.weight_classes img_loss = L1Loss(losses.il) if losses.il else None per_loss = PerceptualLoss( {'conv5_4': 1}, perceptual_weight=losses.per) if losses.per else None adv_loss = GANLoss('vanilla', loss_weight=losses.adv) if losses.adv else None tv_loss = WeightedTVLoss(losses.tv) if losses.tv else None seg_loss = SegLoss(losses.seg, weight_classes) if losses.seg else None return (img_loss, per_loss, adv_loss, tv_loss, seg_loss)
def __init__(self, opt): super(DddLoss, self).__init__() # 定义损失函数 self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() # L1损失函数 self.crit_reg = L1Loss() # 混合连续-离散损失:multiBin损失 self.crit_rot = BinRotLoss() self.opt = opt
def __init__(self, opt): super(CarPose6DoFLoss, self).__init__() self.crit = torch.nn.MSELoss() if opt.mse_loss else FocalLoss() self.crit_reg = L1Loss() self.crit_xyz = DenseLocL1Loss() self.opt = opt
def __init__(self, opt): self.opt = opt self.crit = FocalLoss() self.crit_reg = L1Loss() self.crit_wh = self.crit_reg