def run(): #load config settings experiment_id = cfg.run_config['experiment_id'] data_folder = cfg.run_config['data_folder'] look_back = cfg.multi_step_lstm_config['look_back'] look_ahead = cfg.multi_step_lstm_config['look_ahead'] batch_size = cfg.multi_step_lstm_config['batch_size'] -(look_back+look_ahead) +1 epochs = cfg.multi_step_lstm_config['n_epochs'] dropout = cfg.multi_step_lstm_config['dropout'] layers = cfg.multi_step_lstm_config['layers'] loss = cfg.multi_step_lstm_config['loss'] # optimizer = cfg.multi_step_lstm_config['optimizer'] shuffle = cfg.multi_step_lstm_config['shuffle'] patience = cfg.multi_step_lstm_config['patience'] validation = cfg.multi_step_lstm_config['validation'] learning_rate = cfg.multi_step_lstm_config['learning_rate'] logging.info("----------------------------------------------------") logging.info('Run id %s' % (experiment_id)) logging.info(" HYPERPRAMRAMS : %s" % (str(locals()))) train_scaler, X_train, y_train, X_validation1, y_validation1, X_validation2, y_validation2, validation2_labels, \ X_test, y_test, test_labels = util.load_data(data_folder, look_back, look_ahead) #For stateful lstm the batch_size needs to be fixed before hand. #We also need to ernsure that all batches shud have the same number of samples. So we drop the last batch as it has less elements than batch size if batch_size > 1: n_train_batches = len(X_train)/batch_size len_train = n_train_batches * batch_size if len_train < len(X_train): X_train = X_train[:len_train] y_train = y_train[:len_train] n_validation1_batches = len(X_validation1)/batch_size len_validation1 = n_validation1_batches * batch_size if n_validation1_batches * batch_size < len(X_validation1): X_validation1 = X_validation1[:len_validation1] y_validation1 = y_validation1[:len_validation1] n_validation2_batches = len(X_validation2) / batch_size len_validation2 = n_validation2_batches * batch_size if n_validation2_batches * batch_size < len(X_validation2): X_validation2 = X_validation2[:len_validation2] y_validation2 = y_validation2[:len_validation2] n_test_batches = len(X_test)/batch_size len_test = n_test_batches * batch_size if n_test_batches * batch_size < len(X_test): X_test = X_test[:len_test] y_test = y_test[:len_test] stateful_lstm = lstm.StatefulMultiStepLSTM(batch_size=batch_size, look_back=look_back, look_ahead=look_ahead, layers=layers, dropout=dropout, loss=loss, learning_rate=learning_rate) model = stateful_lstm.build_model() if cfg.run_config['save_figure']: plot_model(model, to_file="imgs/%s_stateful_lstm.png"%(experiment_id), show_shapes=True, show_layer_names=True) # train model on training set. validation1 set is used for early stopping history = lstm.train_stateful_model(model, X_train, y_train, batch_size, epochs, shuffle, validation, (X_validation1, y_validation1), patience) fig = plt.figure() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() if cfg.run_config['save_figure']: util.save_figure("%s/%s/"%("imgs",experiment_id), "train_errors" , fig) validation2_loss = model.evaluate(X_validation2, y_validation2, batch_size=batch_size, verbose=2) print "Validation2 Loss %s" % (validation2_loss) logging.info("Validation2 Loss %s" % (validation2_loss)) test_loss = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=2) print "Test Loss %s" % (test_loss) logging.info("Test Loss %s" % (test_loss)) predictions_train, y_true_train = get_predictions("Train", model, X_train, y_train, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) np.save(data_folder + "train_predictions", predictions_train) np.save(data_folder + "train_true",y_true_train) predictions_validation1, y_true_validation1 = get_predictions("Validation1", model, X_validation1, y_validation1, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) predictions_validation1_scaled = train_scaler.transform(predictions_validation1) print "Calculated validation1 loss %f" % (mean_squared_error( np.reshape(y_validation1, [len(y_validation1), look_ahead]), np.reshape(predictions_validation1_scaled, [len(predictions_validation1_scaled), look_ahead]))) np.save(data_folder + "validation1_predictions", predictions_validation1) np.save(data_folder + "validation1_true", y_true_validation1) predictions_validation2, y_true_validation2 = get_predictions("Validation2", model, X_validation2, y_validation2, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) predictions_validation2_scaled = train_scaler.transform(predictions_validation2) print "Calculated validation2 loss %f"%(mean_squared_error( np.reshape(y_validation2, [len(y_validation2), look_ahead]), np.reshape(predictions_validation2_scaled, [len(predictions_validation2_scaled), look_ahead]))) np.save(data_folder + "validation2_predictions", predictions_validation2) np.save(data_folder + "validation2_true", y_true_validation2) np.save(data_folder + "validation2_labels", validation2_labels) predictions_test, y_true_test = get_predictions("Test", model, X_test, y_test, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) predictions_test_scaled = train_scaler.transform(predictions_test) print "Calculated test loss %f" % (mean_squared_error( np.reshape(y_test, [len(y_test),look_ahead]), np.reshape(predictions_test_scaled, [len(predictions_test_scaled),look_ahead]))) np.save(data_folder + "test_predictions", predictions_test) np.save(data_folder + "test_true", y_true_test) np.save(data_folder + "test_labels", test_labels) logging.info("-------------------------run complete----------------------------------------------")
def run(): #load config settings experiment_id = cfg.run_config['experiment_id'] data_folder = cfg.run_config['data_folder'] look_back = cfg.multi_step_lstm_config['look_back'] look_ahead = cfg.multi_step_lstm_config['look_ahead'] batch_size = cfg.multi_step_lstm_config['batch_size'] -(look_back+look_ahead) +1 epochs = cfg.multi_step_lstm_config['n_epochs'] dropout = cfg.multi_step_lstm_config['dropout'] layers = cfg.multi_step_lstm_config['layers'] loss = cfg.multi_step_lstm_config['loss'] # optimizer = cfg.multi_step_lstm_config['optimizer'] shuffle = cfg.multi_step_lstm_config['shuffle'] patience = cfg.multi_step_lstm_config['patience'] validation = cfg.multi_step_lstm_config['validation'] learning_rate = cfg.multi_step_lstm_config['learning_rate'] logging.info("----------------------------------------------------") logging.info('Run id %s' % (experiment_id)) logging.info(" HYPERPRAMRAMS : %s" % (str(locals()))) train_scaler, X_train, y_train, X_validation1, y_validation1, X_validation2, y_validation2, validation2_labels, \ X_test, y_test, test_labels = util.load_data(data_folder, look_back, look_ahead) #For stateful lstm the batch_size needs to be fixed before hand. #We also need to ernsure that all batches shud have the same number of samples. So we drop the last batch as it has less elements than batch size if batch_size > 1: n_train_batches = len(X_train)/batch_size len_train = n_train_batches * batch_size if len_train < len(X_train): X_train = X_train[:len_train] y_train = y_train[:len_train] n_validation1_batches = len(X_validation1)/batch_size len_validation1 = n_validation1_batches * batch_size if n_validation1_batches * batch_size < len(X_validation1): X_validation1 = X_validation1[:len_validation1] y_validation1 = y_validation1[:len_validation1] n_validation2_batches = len(X_validation2) / batch_size len_validation2 = n_validation2_batches * batch_size if n_validation2_batches * batch_size < len(X_validation2): X_validation2 = X_validation2[:len_validation2] y_validation2 = y_validation2[:len_validation2] n_test_batches = len(X_test)/batch_size len_test = n_test_batches * batch_size if n_test_batches * batch_size < len(X_test): X_test = X_test[:len_test] y_test = y_test[:len_test] stateful_lstm = lstm.StatefulMultiStepLSTM(batch_size=batch_size, look_back=look_back, look_ahead=look_ahead, layers=layers, dropout=dropout, loss=loss, learning_rate=learning_rate) model = stateful_lstm.build_model() if cfg.run_config['save_figure']: plot_model(model, to_file="imgs/%s_stateful_lstm.png"%(experiment_id), show_shapes=True, show_layer_names=True) # train model on training set. validation1 set is used for early stopping history = lstm.train_stateful_model(model, X_train, y_train, batch_size, epochs, shuffle, validation, (X_validation1, y_validation1), patience) fig = plt.figure() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() if cfg.run_config['save_figure']: util.save_figure("%s/%s/"%("imgs",experiment_id), "train_errors" , fig) validation2_loss = model.evaluate(X_validation2, y_validation2, batch_size=batch_size, verbose=2) print("Validation2 Loss %s" % (validation2_loss)) logging.info("Validation2 Loss %s" % (validation2_loss)) test_loss = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=2) print("Test Loss %s" % (test_loss)) logging.info("Test Loss %s" % (test_loss)) predictions_train, y_true_train = get_predictions("Train", model, X_train, y_train, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) np.save(data_folder + "train_predictions", predictions_train) np.save(data_folder + "train_true",y_true_train) predictions_validation1, y_true_validation1 = get_predictions("Validation1", model, X_validation1, y_validation1, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) predictions_validation1_scaled = train_scaler.transform(predictions_validation1) print("Calculated validation1 loss %f" % (mean_squared_error( np.reshape(y_validation1, [len(y_validation1), look_ahead]), np.reshape(predictions_validation1_scaled, [len(predictions_validation1_scaled), look_ahead])))) np.save(data_folder + "validation1_predictions", predictions_validation1) np.save(data_folder + "validation1_true", y_true_validation1) predictions_validation2, y_true_validation2 = get_predictions("Validation2", model, X_validation2, y_validation2, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) predictions_validation2_scaled = train_scaler.transform(predictions_validation2) print("Calculated validation2 loss %f"%(mean_squared_error( np.reshape(y_validation2, [len(y_validation2), look_ahead]), np.reshape(predictions_validation2_scaled, [len(predictions_validation2_scaled), look_ahead])))) np.save(data_folder + "validation2_predictions", predictions_validation2) np.save(data_folder + "validation2_true", y_true_validation2) np.save(data_folder + "validation2_labels", validation2_labels) predictions_test, y_true_test = get_predictions("Test", model, X_test, y_test, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) predictions_test_scaled = train_scaler.transform(predictions_test) print("Calculated test loss %f" % (mean_squared_error( np.reshape(y_test, [len(y_test),look_ahead]), np.reshape(predictions_test_scaled, [len(predictions_test_scaled),look_ahead])))) np.save(data_folder + "test_predictions", predictions_test) np.save(data_folder + "test_true", y_true_test) np.save(data_folder + "test_labels", test_labels) logging.info("-------------------------run complete----------------------------------------------")
def run(): #load config settings experiment_id = cfg.run_config['experiment_id'] data_folder = cfg.run_config['data_folder'] look_back = cfg.multi_step_lstm_config['look_back'] look_ahead = cfg.multi_step_lstm_config['look_ahead'] batch_size = cfg.multi_step_lstm_config['batch_size'] -(look_back+look_ahead) +1 epochs = cfg.multi_step_lstm_config['n_epochs'] dropout = cfg.multi_step_lstm_config['dropout'] layers = cfg.multi_step_lstm_config['layers'] loss = cfg.multi_step_lstm_config['loss'] shuffle = cfg.multi_step_lstm_config['shuffle'] patience = cfg.multi_step_lstm_config['patience'] validation = cfg.multi_step_lstm_config['validation'] learning_rate = cfg.multi_step_lstm_config['learning_rate'] train_scaler, X_train, y_train, X_validation1, y_validation1, X_validation2, y_validation2, validation2_labels, \ X_test, y_test, test_labels = util.load_data(data_folder, look_back, look_ahead) #For stateful lstm the batch_size needs to be fixed before hand. #We also need to ernsure that all batches shud have the same number of samples. So we drop the last batch as it has less elements than batch size if batch_size > 1: n_train_batches = int(len(X_train)/batch_size) len_train = n_train_batches * batch_size if len_train < len(X_train): X_train = X_train[:len_train] y_train = y_train[:len_train] n_validation1_batches = int(len(X_validation1)/batch_size) len_validation1 = n_validation1_batches * batch_size if n_validation1_batches * batch_size < len(X_validation1): X_validation1 = X_validation1[:len_validation1] y_validation1 = y_validation1[:len_validation1] n_validation2_batches = int(len(X_validation2) / batch_size) len_validation2 = n_validation2_batches * batch_size if n_validation2_batches * batch_size < len(X_validation2): X_validation2 = X_validation2[:len_validation2] y_validation2 = y_validation2[:len_validation2] n_test_batches = int(len(X_test)/batch_size) len_test = n_test_batches * batch_size if n_test_batches * batch_size < len(X_test): X_test = X_test[:len_test] y_test = y_test[:len_test] stateful_lstm = lstm.StatefulMultiStepLSTM(batch_size=batch_size, look_back=look_back, look_ahead=look_ahead, layers=layers, dropout=dropout, loss=loss, learning_rate=learning_rate) model = stateful_lstm.build_model() history = lstm.train_stateful_model(model, X_train, y_train, batch_size, epochs, shuffle, validation, (X_validation1, y_validation1), patience) fig = plt.figure() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() if cfg.run_config['save_figure']: util.save_figure("%s/%s/"%("imgs",experiment_id), "train_errors" , fig) validation2_loss = model.evaluate(X_validation2, y_validation2, batch_size=batch_size, verbose=2) test_loss = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=2) predictions_train, y_true_train = get_predictions("Train", model, X_train, y_train, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) np.save(data_folder + "train_predictions", predictions_train) np.save(data_folder + "train_true",y_true_train) predictions_validation1, y_true_validation1 = get_predictions("Validation1", model, X_validation1, y_validation1, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) np.save(data_folder + "validation1_predictions", predictions_validation1) np.save(data_folder + "validation1_true", y_true_validation1) predictions_validation2, y_true_validation2 = get_predictions("Validation2", model, X_validation2, y_validation2, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) np.save(data_folder + "validation2_predictions", predictions_validation2) np.save(data_folder + "validation2_true", y_true_validation2) np.save(data_folder + "validation2_labels", validation2_labels) predictions_test, y_true_test = get_predictions("Test", model, X_test, y_test, train_scaler, batch_size, look_ahead, look_back, epochs, experiment_id, ) np.save(data_folder + "test_predictions", predictions_test) np.save(data_folder + "test_true", y_true_test) np.save(data_folder + "test_labels", test_labels)