def train_real(self, data_loc=None): from utils.text_process import code_to_text from utils.text_process import get_tokenlized wi_dict, iw_dict = self.init_real_trainng(data_loc) self.init_real_metric() def get_real_test_file(dict=iw_dict): with open(self.generator_file, 'r') as file: codes = get_tokenlized(self.generator_file) with open(self.test_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=dict)) self.sess.run(tf.compat.v1.global_variables_initializer()) self.log = open(self.log_file, 'w') generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) print('Pre-training Generator...') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() self.add_epoch() if epoch % 5 == 0: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() print('Pre-training Discriminator...') self.reset_epoch() for epoch in range(self.pre_epoch_num): self.train_discriminator() self.reset_epoch() print('Adversarial Training...') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): start = time() for index in range(1): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() for _ in range(15): self.train_discriminator()
def train_oracle(self): self.init_oracle_trainng() self.init_metric() self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 80 self.adversarial_epoch_num = 100 self.log = open('experiment-log-maligan-basic.csv', 'w') generate_samples(self.sess, self.oracle, self.batch_size, self.generate_num, self.oracle_file) generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) self.oracle_data_loader.create_batches(self.generator_file) # rollout = Reward(generator, update_rate) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(50): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: self.evaluate() for _ in range(15): self.train_discriminator()
def train_real(self, data_loc=None): from utils.text_process import code_to_text from utils.text_process import get_tokenlized wi_dict, iw_dict = self.init_real_trainng(data_loc) self.init_real_metric() def get_real_test_file(dict=iw_dict): with open(self.generator_file, 'r') as file: codes = get_tokenlized(self.generator_file) with open(self.test_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=dict)) self.sess.run(tf.global_variables_initializer()) self.log = open('experiment-log-maligan-real.csv', 'w') generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(1): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() for _ in range(15): self.train_discriminator()
def train_oracle(self): self.init_oracle_trainng() self.init_metric() self.sess.run(tf.compat.v1.global_variables_initializer()) self.log = open(self.log_file, 'w') generate_samples(self.sess, self.oracle, self.batch_size, self.generate_num, self.oracle_file) generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) self.oracle_data_loader.create_batches(self.generator_file) print('Pre-training Generator...') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() self.add_epoch() if epoch % 5 == 0: self.evaluate() print('Pre-training Discriminator...') self.reset_epoch() for epoch in range(self.pre_epoch_num): self.train_discriminator() self.reset_epoch() print('Adversarial Training...') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): start = time() for index in range(50): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: self.evaluate() for _ in range(15): self.train_discriminator() self.log.close()
def train_oracle(self): self.init_oracle_trainng() self.init_metric() self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 80 self.adversarial_epoch_num = 100 self.log = open('experiment-log-maligan-basic.csv', 'w') generate_samples(self.sess, self.oracle, self.batch_size, self.generate_num, self.oracle_file) generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) self.oracle_data_loader.create_batches(self.generator_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(50): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: self.evaluate() for _ in range(15): self.train_discriminator()
def train_cfg(self): import json from utils.text_process import get_tokenlized from utils.text_process import code_to_text cfg_grammar = """ S -> S PLUS x | S SUB x | S PROD x | S DIV x | x | '(' S ')' PLUS -> '+' SUB -> '-' PROD -> '*' DIV -> '/' x -> 'x' | 'y' """ wi_dict_loc, iw_dict_loc = self.init_cfg_training(cfg_grammar) with open(iw_dict_loc, 'r') as file: iw_dict = json.load(file) def get_cfg_test_file(dict=iw_dict): with open(self.generator_file, 'r') as file: codes = get_tokenlized(self.generator_file) with open(self.test_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=dict)) self.init_cfg_metric(grammar=cfg_grammar) self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 80 self.adversarial_epoch_num = 100 self.log = open('experiment-log-maliganbasic-cfg.csv', 'w') # generate_samples(self.sess, self.oracle, self.batch_size, self.generate_num, self.oracle_file) generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) self.oracle_data_loader.create_batches(self.generator_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_cfg_test_file() self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num * 3): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(1): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_cfg_test_file() self.evaluate() for _ in range(15): self.train_discriminator() return
class Maligan(Gan): def __init__(self, oracle=None): super().__init__() # you can change parameters, generator here self.vocab_size = 5000 self.emb_dim = 32 self.hidden_dim = 32 self.sequence_length = 20 self.filter_size = [2, 3] self.num_filters = [100, 200] self.l2_reg_lambda = 0.2 self.dropout_keep_prob = 0.75 self.batch_size = 64 self.generate_num = 128 self.start_token = 0 self.oracle_file = 'save/oracle.txt' self.generator_file = 'save/generator.txt' self.test_file = 'save/test_file.txt' def init_oracle_trainng(self, oracle=None): if oracle is None: oracle = OracleLstm(num_vocabulary=self.vocab_size, batch_size=self.batch_size, emb_dim=self.emb_dim, hidden_dim=self.hidden_dim, sequence_length=self.sequence_length, start_token=self.start_token) self.set_oracle(oracle) generator = Generator(num_vocabulary=self.vocab_size, batch_size=self.batch_size, emb_dim=self.emb_dim, hidden_dim=self.hidden_dim, sequence_length=self.sequence_length, start_token=self.start_token) self.set_generator(generator) discriminator = Discriminator(sequence_length=self.sequence_length, num_classes=2, vocab_size=self.vocab_size, emd_dim=self.emb_dim, filter_sizes=self.filter_size, num_filters=self.num_filters, l2_reg_lambda=self.l2_reg_lambda) self.set_discriminator(discriminator) gen_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length) oracle_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length) dis_dataloader = DisDataloader(batch_size=self.batch_size, seq_length=self.sequence_length) self.set_data_loader(gen_loader=gen_dataloader, dis_loader=dis_dataloader, oracle_loader=oracle_dataloader) def init_metric(self): nll = Nll(data_loader=self.oracle_data_loader, rnn=self.oracle, sess=self.sess) self.add_metric(nll) inll = Nll(data_loader=self.gen_data_loader, rnn=self.generator, sess=self.sess) inll.set_name('nll-test') self.add_metric(inll) from utils.metrics.DocEmbSim import DocEmbSim docsim = DocEmbSim(oracle_file=self.oracle_file, generator_file=self.generator_file, num_vocabulary=self.vocab_size) self.add_metric(docsim) def train_discriminator(self): generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.dis_data_loader.load_train_data(self.oracle_file, self.generator_file) for _ in range(3): self.dis_data_loader.next_batch() x_batch, y_batch = self.dis_data_loader.next_batch() feed = { self.discriminator.input_x: x_batch, self.discriminator.input_y: y_batch, } _ = self.sess.run(self.discriminator.train_op, feed) def evaluate(self): generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) if self.oracle_data_loader is not None: self.oracle_data_loader.create_batches(self.generator_file) if self.log is not None: if self.epoch == 0 or self.epoch == 1: for metric in self.metrics: self.log.write(metric.get_name() + ',') self.log.write('\n') scores = super().evaluate() for score in scores: self.log.write(str(score)+',') self.log.write('\n') return scores return super().evaluate() def train_oracle(self): self.init_oracle_trainng() self.init_metric() self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 80 self.adversarial_epoch_num = 100 self.log = open('experiment-log-maligan-basic.csv', 'w') generate_samples(self.sess, self.oracle, self.batch_size, self.generate_num, self.oracle_file) generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) self.oracle_data_loader.create_batches(self.generator_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(50): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: self.evaluate() for _ in range(15): self.train_discriminator() def init_cfg_training(self, grammar=None): from utils.oracle.OracleCfg import OracleCfg oracle = OracleCfg(sequence_length=self.sequence_length, cfg_grammar=grammar) self.set_oracle(oracle) self.oracle.generate_oracle() self.vocab_size = self.oracle.vocab_size + 1 generator = Generator(num_vocabulary=self.vocab_size, batch_size=self.batch_size, emb_dim=self.emb_dim, hidden_dim=self.hidden_dim, sequence_length=self.sequence_length, start_token=self.start_token) self.set_generator(generator) discriminator = Discriminator(sequence_length=self.sequence_length, num_classes=2, vocab_size=self.vocab_size, emd_dim=self.emb_dim, filter_sizes=self.filter_size, num_filters=self.num_filters, l2_reg_lambda=self.l2_reg_lambda) self.set_discriminator(discriminator) gen_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length) oracle_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length) dis_dataloader = DisDataloader(batch_size=self.batch_size, seq_length=self.sequence_length) self.set_data_loader(gen_loader=gen_dataloader, dis_loader=dis_dataloader, oracle_loader=oracle_dataloader) return oracle.wi_dict, oracle.iw_dict def init_cfg_metric(self, grammar=None): from utils.metrics.Cfg import Cfg cfg = Cfg(test_file=self.test_file, cfg_grammar=grammar) self.add_metric(cfg) def train_cfg(self): import json from utils.text_process import get_tokenlized from utils.text_process import code_to_text cfg_grammar = """ S -> S PLUS x | S SUB x | S PROD x | S DIV x | x | '(' S ')' PLUS -> '+' SUB -> '-' PROD -> '*' DIV -> '/' x -> 'x' | 'y' """ wi_dict_loc, iw_dict_loc = self.init_cfg_training(cfg_grammar) with open(iw_dict_loc, 'r') as file: iw_dict = json.load(file) def get_cfg_test_file(dict=iw_dict): with open(self.generator_file, 'r') as file: codes = get_tokenlized(self.generator_file) with open(self.test_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=dict)) self.init_cfg_metric(grammar=cfg_grammar) self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 80 self.adversarial_epoch_num = 100 self.log = open('experiment-log-maliganbasic-cfg.csv', 'w') # generate_samples(self.sess, self.oracle, self.batch_size, self.generate_num, self.oracle_file) generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) self.oracle_data_loader.create_batches(self.generator_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_cfg_test_file() self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num * 3): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(1): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_cfg_test_file() self.evaluate() for _ in range(15): self.train_discriminator() return def init_real_trainng(self, data_loc=None): from utils.text_process import text_precess, text_to_code from utils.text_process import get_tokenlized, get_word_list, get_dict if data_loc is None: data_loc = 'data/image_coco.txt' self.sequence_length, self.vocab_size = text_precess(data_loc) generator = Generator(num_vocabulary=self.vocab_size, batch_size=self.batch_size, emb_dim=self.emb_dim, hidden_dim=self.hidden_dim, sequence_length=self.sequence_length, start_token=self.start_token) self.set_generator(generator) discriminator = Discriminator(sequence_length=self.sequence_length, num_classes=2, vocab_size=self.vocab_size, emd_dim=self.emb_dim, filter_sizes=self.filter_size, num_filters=self.num_filters, l2_reg_lambda=self.l2_reg_lambda) self.set_discriminator(discriminator) gen_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length) oracle_dataloader = None dis_dataloader = DisDataloader(batch_size=self.batch_size, seq_length=self.sequence_length) self.set_data_loader(gen_loader=gen_dataloader, dis_loader=dis_dataloader, oracle_loader=oracle_dataloader) tokens = get_tokenlized(data_loc) word_set = get_word_list(tokens) [word_index_dict, index_word_dict] = get_dict(word_set) with open(self.oracle_file, 'w') as outfile: outfile.write(text_to_code(tokens, word_index_dict, self.sequence_length)) return word_index_dict, index_word_dict def init_real_metric(self): from utils.metrics.DocEmbSim import DocEmbSim docsim = DocEmbSim(oracle_file=self.oracle_file, generator_file=self.generator_file, num_vocabulary=self.vocab_size) self.add_metric(docsim) inll = Nll(data_loader=self.gen_data_loader, rnn=self.generator, sess=self.sess) inll.set_name('nll-test') self.add_metric(inll) def train_real(self, data_loc=None): from utils.text_process import code_to_text from utils.text_process import get_tokenlized wi_dict, iw_dict = self.init_real_trainng(data_loc) self.init_real_metric() def get_real_test_file(dict=iw_dict): with open(self.generator_file, 'r') as file: codes = get_tokenlized(self.generator_file) with open(self.test_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=dict)) self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 80 self.adversarial_epoch_num = 100 self.log = open('experiment-log-maligan-real.csv', 'w') generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(1): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() for _ in range(15): self.train_discriminator()
def train_real(self, data_loc=None): from utils.text_process import code_to_text from utils.text_process import get_tokenlized wi_dict, iw_dict = self.init_real_trainng(data_loc) self.init_real_metric() def get_real_test_file(dict=iw_dict): with open(self.generator_file, 'r') as file: codes = get_tokenlized(self.generator_file) with open(self.test_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=dict)) self.sess.run(tf.global_variables_initializer()) self.pre_epoch_num = 40 self.adversarial_epoch_num = 50 self.log = open( 'experiment-log-maligan-real_' + self.start_time + str('.csv'), 'w', 1) #self.log = open('experiment-log-maligan-real.csv', 'w') generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) self.gen_data_loader.create_batches(self.oracle_file) print('start pre-train generator:') for epoch in range(self.pre_epoch_num): start = time() loss = pre_train_epoch(self.sess, self.generator, self.gen_data_loader) end = time() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) self.add_epoch() if epoch % 5 == 0: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() print('start pre-train discriminator:') self.reset_epoch() for epoch in range(self.pre_epoch_num): print('epoch:' + str(epoch)) self.train_discriminator() self.reset_epoch() print('adversarial training:') self.reward = Reward() for epoch in range(self.adversarial_epoch_num): # print('epoch:' + str(epoch)) start = time() for index in range(1): samples = self.generator.generate(self.sess) rewards = self.reward.get_reward(self.sess, samples, 16, self.discriminator) feed = { self.generator.x: samples, self.generator.rewards: rewards } _ = self.sess.run(self.generator.g_updates, feed_dict=feed) end = time() self.add_epoch() print('epoch:' + str(self.epoch) + '\t time:' + str(end - start)) if epoch % 5 == 0 or epoch == self.adversarial_epoch_num - 1: generate_samples(self.sess, self.generator, self.batch_size, self.generate_num, self.generator_file) get_real_test_file() self.evaluate() for _ in range(15): self.train_discriminator() #Generate final samples generate_samples(self.sess, self.generator, self.batch_size, self.generate_final_num, self.generator_final_file) with open(self.generator_final_file, 'r') as file: codes = get_tokenlized(self.generator_final_file) with open(self.test_final_file, 'w') as outfile: outfile.write(code_to_text(codes=codes, dictionary=iw_dict))