def build_model(self): if self.config.no_bn: self.netG = dcgan.DCGAN_G_nobn(self.image_size, self.nz, self.nc, self.ngf, self.ngpu, self.config.n_extra_layers) elif self.config.mlp_G: self.netG = mlp.MLP_G(self.image_size, self.nz, self.nc, self.ngf, self.ngpu) else: self.netG = dcgan.DCGAN_G(self.image_size, self.nz, self.nc, self.ngf, self.ngpu, self.config.n_extra_layers) self.netG.apply(weights_init) if self.config.netG != '': # load checkpoint if needed self.netG.load_state_dict(torch.load(self.config.netG)) if self.config.mlp_D: self.netD = mlp.MLP_D(self.image_size, self.nz, self.nc, self.ndf, self.ngpu) else: self.netD = dcgan.DCGAN_D(self.image_size, self.nz, self.nc, self.ndf, self.ngpu, self.config.n_extra_layers) self.netD.apply(weights_init) if self.config.netD != '': self.netD.load_state_dict(torch.load(self.config.netD))
def __getDiscriminator(opt, ngpu, nz, ngf, ndf, nc, n_extra_layers): if opt.mlp_D: if isDebug: print("Using MLP_D for Discriminator/Critic") netD = mlp.MLP_D(opt.imageSize, nz, nc, ndf, ngpu) else: if isDebug: print("Using DCGAN_D for Discriminator/Critic") netD = dcgan.DCGAN_D(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print("netD:\n {0}".format(netD)) return netD
if opt.noBN: netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers) elif opt.mlp_G: netG = mlp.MLP_G(opt.imageSize, nz, nc, ngf, ngpu) else: netG = dcgan.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers) netG.apply(weights_init) if opt.netG != '': # load checkpoint if needed netG.load_state_dict(torch.load(opt.netG)) print(netG) if opt.mlp_D: netD = mlp.MLP_D(opt.imageSize, nz, nc, ndf, ngpu) else: netD = dcgan.DCGAN_D(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) noise = torch.FloatTensor(opt.batchSize, nz, 1, 1) fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1) one = torch.FloatTensor([1]) mone = one * -1 if opt.cuda:
if args.BN_G: netG = dcgan.DCGAN_G(args.imageSize, nz, nc, ngf, ngpu, n_extra_layers) elif args.mlp_G: netG = mlp.MLP_G(args.imageSize, nz, nc, ngf, ngpu) else: netG = dcgan.DCGAN_G_nobn(args.imageSize, nz, nc, ngf, ngpu, n_extra_layers) netG.apply(weights_init) if args.netG != '': # load checkpoint if needed netG.load_state_dict(torch.load(args.netG)) print(netG) if args.BN_D: netD = dcgan.DCGAN_D(args.imageSize, nz, nc, ndf, ngpu, n_extra_layers) elif args.mlp_D: netD = mlp.MLP_D(args.imageSize, nz, nc, ndf, ngpu) else: netD = dcgan.DCGAN_D_nobn_bias(args.imageSize, nc, ndf, ngpu, n_extra_layers) netD.apply(weights_init) if args.netD != '': netD.load_state_dict(torch.load(args.netD)) print(netD) data_dim = nc * args.imageSize * args.imageSize real = torch.FloatTensor(batchSize, nc, args.imageSize, args.imageSize).to(device) noise = torch.FloatTensor(batchSize, nz, 1, 1).to(device) fixed_noise = torch.FloatTensor(batchSize, nz, 1, 1).normal_(0, 1).to(device) one = torch.FloatTensor([1]) mone = one * -1 ones = torch.ones(batchSize)
if opt.noBN: netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers) elif opt.mlp_G: netG = mlp.MLP_G(opt.imageSize, nz, nc, ngf, ngpu) else: netG = dcgan.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers) netG.apply(weights_init) if opt.netG != '': # load checkpoint if needed netG.load_state_dict(torch.load(opt.netG)) print(netG) if opt.mlp_D: netD = mlp.MLP_D(opt.imageSize, nz, nc, ndf, ngpu, add_sigmoid=add_sigmoid) else: netD = dcgan.DCGAN_D(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers, add_sigmoid=add_sigmoid) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) if opt.mode == 'gan':
def main(opt, reporter=None): writer = SummaryWriter() with open(writer.file_writer.get_logdir() + '/args.json', 'w') as f: json.dump(opt, f) if opt['experiment'] is None: opt['experiment'] = 'samples' os.system('mkdir {0}'.format(opt['experiment'])) opt['manualSeed'] = random.randint(1, 10000) # fix seed print("Random Seed: ", opt['manualSeed']) random.seed(opt['manualSeed']) torch.manual_seed(opt['manualSeed']) cudnn.benchmark = True if torch.cuda.is_available() and not opt['cuda']: print("WARNING: You have a CUDA device," "so you should probably run with --cuda") if opt['dataset'] in ['imagenet', 'folder', 'lfw']: # folder dataset dataset = dset.ImageFolder(root=opt['dataroot'], transform=transforms.Compose([ transforms.Scale(opt['imageSize']), transforms.CenterCrop(opt['imageSize']), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt['dataset'] == 'lsun': dataset = dset.LSUN(root=opt['dataroot'], classes=['bedroom_train'], transform=transforms.Compose([ transforms.Scale(opt['imageSize']), transforms.CenterCrop(opt['imageSize']), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt['dataset'] == 'cifar10': dataset = dset.CIFAR10(root=opt['dataroot'], download=True, transform=transforms.Compose([ transforms.Scale(opt['imageSize']), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt['batchSize'], shuffle=True, num_workers=int(opt['workers'])) ngpu = int(opt['ngpu']) nz = int(opt['nz']) ngf = int(opt['ngf']) ndf = int(opt['ndf']) nc = int(opt['nc']) n_extra_layers = int(opt['n_extra_layers']) # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) if opt['noBN']: netG = dcgan.DCGAN_G_nobn(opt['imageSize'], nz, nc, ngf, ngpu, n_extra_layers) elif opt['type'] == 'mlp': netG = mlp.MLP_G(opt['imageSize'], nz, nc, ngf, ngpu) elif opt['type'] == 'resnet': netG = resnet.Generator(nz) else: netG = dcgan.DCGAN_G(opt['imageSize'], nz, nc, ngf, ngpu, n_extra_layers) netG.apply(weights_init) print(netG) if opt['type'] == 'mlp': netD = mlp.MLP_D(opt['imageSize'], nz, nc, ndf, ngpu) elif opt['type'] == 'resnet': netD = resnet.Discriminator(nz) else: netD = dcgan.DCGAN_D(opt['imageSize'], nz, nc, ndf, ngpu, n_extra_layers) netD.apply(weights_init) print(netD) inc_noise = torch.utils.data.TensorDataset( torch.randn(50000, nz, 1, 1).cuda()) inc_noise_dloader = torch.utils.data.DataLoader( inc_noise, batch_size=opt['batchSize']) input = torch.FloatTensor(opt['batchSize'], 3, opt['imageSize'], opt['imageSize']) noise = torch.FloatTensor(opt['batchSize'], nz, 1, 1) fixed_noise = torch.FloatTensor(opt['batchSize'], nz, 1, 1).normal_(0, 1) one = torch.FloatTensor([1]) mone = one * -1 if opt['cuda']: netD.cuda() netG.cuda() input = input.cuda() one, mone = one.cuda(), mone.cuda() noise, fixed_noise = noise.cuda(), fixed_noise.cuda() # setup optimizer if opt['adam']: optimizerD = optim.Adam(netD.parameters(), lr=opt['lrD'], betas=(opt['beta1'], opt['beta2'])) optimizerG = optim.Adam(netG.parameters(), lr=opt['lrG'], betas=(opt['beta1'], opt['beta2'])) else: optimizerD = optim.RMSprop(netD.parameters(), lr=opt['lrD']) optimizerG = optim.RMSprop(netG.parameters(), lr=opt['lrG']) var_weight = 0.5 w = torch.tensor( [var_weight * (1 - var_weight)**i for i in range(9, -1, -1)]).cuda() gen_iterations = 0 for epoch in range(opt['niter']): data_iter = iter(dataloader) i = 0 while i < len(dataloader): # l_var = opt.l_var + (gen_iterations + 1)/3000 l_var = opt['l_var'] ############################ # (1) Update D network ########################### for p in netD.parameters(): # reset requires_grad p.requires_grad = True # train the discriminator Diters times # if gen_iterations < 25 or gen_iterations % 500 == 0: if gen_iterations % 500 == 0: Diters = 100 else: Diters = opt['Diters'] j = 0 while j < Diters and i < len(dataloader): j += 1 # enforce constraint if not opt['var_constraint']: for p in netD.parameters(): p.data.clamp_(opt['clamp_lower'], opt['clamp_upper']) data = data_iter.next() i += 1 # train with real real_cpu, _ = data netD.zero_grad() batch_size = real_cpu.size(0) if opt['cuda']: real_cpu = real_cpu.cuda() input.resize_as_(real_cpu).copy_(real_cpu) inputv = Variable(input) out_D_real = netD(inputv) errD_real = out_D_real.mean(0).view(1) if opt['var_constraint']: vm_real = out_D_real.var(0) # train with fake noise.resize_(opt['batchSize'], nz, 1, 1).normal_(0, 1) with torch.no_grad(): noisev = Variable(noise) # totally freeze netG fake = netG(noisev).data inputv = fake out_D_fake = netD(inputv) errD_fake = out_D_fake.mean(0).view(1) if opt['var_constraint']: vm_fake = out_D_fake.var(0) errD = errD_real - errD_fake loss = -((errD_real - errD_fake) - l_var * torch.exp( torch.sqrt(torch.log(vm_real)**2 + torch.log(vm_fake)**2))) loss.backward() optimizerD.step() if opt['var_constraint']: writer.add_scalars('train/variance', { 'real': vm_real.item(), 'fake': vm_fake.item() }, epoch * len(dataloader) + i) ############################ # (2) Update G network ########################### for p in netD.parameters(): p.requires_grad = False # to avoid computation netG.zero_grad() # in case our last batch was the tail batch of the dataloader, # make sure we feed a full batch of noise noise.resize_(opt['batchSize'], nz, 1, 1).normal_(0, 1) noisev = Variable(noise) fake = netG(noisev) errG = -netD(fake).mean(0).view(1) errG.backward() optimizerG.step() gen_iterations += 1 if torch.isnan(errG): raise ValueError("Loss is nan") ############################ # Log Data ########################### print('[%d/%d][%d/%d][%d] Loss_D: %f Loss_G: %f Loss_D_real: %f' ' Loss_D_fake %f' % (epoch, opt['niter'], i, len(dataloader), gen_iterations, errD.data[0], errG.data[0], errD_real.data[0], errD_fake.data[0])) writer.add_scalar('train/critic', -errD.item(), gen_iterations) if gen_iterations % (500 * 64 / opt['batchSize']) == 0: real_cpu = real_cpu.mul(0.5).add(0.5) vutils.save_image(real_cpu, f'{opt["experiment"]}/real_samples.png') with torch.no_grad(): fake = netG(Variable(fixed_noise)) fake.data = fake.data.mul(0.5).add(0.5) vutils.save_image( fake.data, f'{opt["experiment"]}/' f'fake_samples_{gen_iterations:010d}.png') writer.add_image( 'train/sample', fake.data.mul(255).clamp(0, 255).byte().cpu().numpy(), gen_iterations) ############################ # (3) Compute Scores ############################ if gen_iterations % (500 * 64 / opt['batchSize']) == 0: with torch.no_grad(): netG.eval() samples = [] for (x, ) in inc_noise_dloader: samples.append(netG(x)) netG.train() samples = torch.cat(samples, dim=0).cpu() samples = (samples - samples.mean()) / samples.std() score, _ = inception_score(samples.numpy(), cuda=True, resize=True, splits=10) writer.add_scalar('test/inception_50k', score, gen_iterations) # fids = fid_score( # samples.permute(0, 2, 3, # 1).mul(128).add(128).clamp(255).numpy(), # 'cifar10' # ) # writer.add_scalar('test/fid_50k', fids, gen_iterations) if reporter: reporter(inception=score, fid=0) # do checkpointing torch.save(netG.state_dict(), f'{opt["experiment"]}/netG_epoch_{epoch}.pth') torch.save(netD.state_dict(), f'{opt["experiment"]}/netD_epoch_{epoch}.pth')
netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, z_dims, ngf, ngpu, n_extra_layers) elif opt.mlp_G: print("B") netG = mlp.MLP_G(opt.imageSize, nz, z_dims, ngf, ngpu) else: print("C") netG = dcgan.DCGAN_G(opt.imageSize, nz, z_dims, ngf, ngpu, n_extra_layers) netG.apply(weights_init) if opt.netG != '': # load checkpoint if needed netG.load_state_dict(torch.load(opt.netG)) print(netG) if opt.mlp_D: netD = mlp.MLP_D(opt.imageSize, nz, z_dims, ndf, ngpu) else: netD = dcgan.DCGAN_D(opt.imageSize, nz, z_dims, ndf, ngpu, n_extra_layers) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) input = torch.FloatTensor(opt.batchSize, z_dims, opt.imageSize, opt.imageSize) noise = torch.FloatTensor(opt.batchSize, nz, 1, 1) fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1) one = torch.FloatTensor([1]) mone = one * -1