end='') end = time.time() print('\repochs: {:4d}, loss_batch(R=L1):{:.4f}'.format( ep, np.mean(loss_it)), end='') if isAdv: print(', loss_gen: {:.4f}, loss_dis: {:.4f}'.format( np.mean(loss_gen), np.mean(loss_dis)), end='') print(' in {:3.2f}s'.format(end - start)) # Save model each {opts.save_epoch} epochs if ep % opts.save_epoch == 0: print('saving model at epoch {:4d}'.format(ep)) model.save_model(ep) if __name__ == '__main__': # Get parameters opts = baseOpt().parse() # Build model, and run test model, isAdv = setModel(opts.model, opts) # Loading a model if opts.load_epoch > 0: print('Loading model at epoch {:d}'.format(opts.load_epoch)) model.load_model(opts.load_epoch) train_op(model, opts, isAdv)
#ambnt_batch = [ambnt_imgs[it]] flash_batch = [flash_imgs[it]] flash_file = file_list[it] # Set inputs of the model and run model.set_inputs(flash_batch, None) # For the DeepFlash model if opts.model == 'DeepFlash': flash_bf_batch = [flash_bf_imgs[it]] # Setting input and target images filtered model.set_filtered_inputs(flash_bf_batch, None) model.forward() saveimg(results_path, flash_file, model.fake_Y, opts.out_act) print('\riter:{:4d}/{:4d}'.format(it + 1, len(flash_imgs)), end='') print('\rTesting [{:4d}/{:4d}]: check the results on "{}"'.format( it + 1, len(flash_imgs), results_path)) if __name__ == "__main__": # Get parameters opts = baseOpt().parse() # Build model, load, and run test print('Testing {} model '.format(opts.model)) model, _ = setModel(opts, False) model.load_model(opts.load_epoch) test_op(model, opts)