def feature_extract(self, z, f):
     #TODO: The original OpenAI glow code uses gradient checkpointing, an efficient way 
     # of reducing peak memory consumption. Test adding gradient checkpointing to reduce 
     # memory consumption.
     # h = torch.utils.checkpoint.checkpoint(f, z) # change the line below to this.
     h = f(z)
     shift, scale = thops.split_feature(h, "cross")
     #TODO: test with tanh instead of sigmoid like in RealNVP
     scale = (torch.sigmoid(scale + 2.) + self.affine_eps)
     return scale, shift
예제 #2
0
파일: Split.py 프로젝트: victorca25/BasicSR
 def split2d_prior(self, z, ft):
     if ft is not None:
         z = torch.cat([z, ft], dim=1)
     h = self.conv(z)
     return thops.split_feature(h, "cross")