예제 #1
0
def convert(model_data_path, output_path='/tmp/model.ckpt'):
    '''Convert the caffe model parameters to .ckpt.'''

    # Set the data specifications for the model
    width = None
    height = None
    channels = None
    input_node_name = None

    assert width and height and channels and input_node_name is not None, \
    'Please, fill the model parameters'

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, height, width, channels),
                                name='inputs')

    # Construct the network
    net = Net({'input_node_name': input_node})

    with tf.Session() as sesh:
        # Load the converted parameters
        print('Loading the model...')
        net.load(model_data_path, sesh)

        saver = tf.train.Saver()
        save_path = saver.save(sesh, output_path)
        print("\nModel saved in file: %s" % save_path)
    def inception_mod(inputs, hyperparams: dict, name: str):
        """
        Well-tuned inception module used in the subsequent GoogLeNet-like CNN
        :param inputs: tensor
        :param hyperparams: dictionnary of hyperparameters for the sizes of the kernels
        :param name: for variable scope
        """
        with tf.variable_scope(name):
            # 1x1 pathway
            x1 = Net.conv2d(layer_name='1x1_conv',
                            inputs=inputs,
                            kernel_shape=hyperparams["1x1_conv_kernel"],
                            strides=1,
                            activation_func=tf.nn.tanh,
                            padding='SAME')

            # 1x1 to 3x3 pathway
            x2 = Net.conv2d(layer_name='3x3_conv1',
                            inputs=inputs,
                            kernel_shape=hyperparams["3x3_conv_kernel2"],
                            strides=1,
                            activation_func=tf.nn.tanh,
                            padding='SAME',
                            kernel_shape_pre=hyperparams["3x3_conv_kernel1"])

            # 1x1 to 5x5 pathway
            x3 = Net.conv2d(layer_name='5x5_conv1',
                            inputs=inputs,
                            kernel_shape=hyperparams["5x5_conv_kernel2"],
                            strides=1,
                            activation_func=tf.nn.tanh,
                            padding='SAME',
                            kernel_shape_pre=hyperparams["5x5_conv_kernel1"])

            # 3x3 to 1x1 pathway
            x4 = tf.nn.max_pool(inputs,
                                ksize=[1, 3, 3, 1],
                                strides=[1, 1, 1, 1],
                                padding='SAME',
                                name="pooling1")

            x4 = Net.conv2d(layer_name='pooling1_conv',
                            inputs=x4,
                            kernel_shape=hyperparams["pooling1_conv_kernel"],
                            strides=1,
                            activation_func=tf.nn.tanh,
                            padding='SAME')

            x = tf.concat([x1, x2, x3, x4],
                          axis=3)  # Concat in the 4th dim to stack
            outputs = tf.tanh(x)

            return outputs
    def __init__(self, opt):
        self.opt = opt
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')

        if opt.net == 'vgg':
            self.net = vgg.vgg16(num_classes=opt.n_classes)
        elif opt.net == 'normal':
            self.net = Net(num_classes=opt.n_classes)
        elif opt.net == 'att':
            self.net = AttNet(num_classes=opt.n_classes)
        elif opt.net == 'vgg_att':
            self.net = VGGAttNet(num_classes=opt.n_classes)
        else:
            raise ValueError('[%s] cannot be used!' % opt.net)

        self.net = self.net.to(self.device)

        if not opt.is_train:
            self.load_network(self.opt.which_epoch)
        else:
            if self.opt.resume_train:
                self.load_network(self.opt.which_epoch)

            self.cls_criterion = nn.CrossEntropyLoss()
            if opt.training_type == 'att_consist':
                self.mask_criterion = nn.MSELoss()
            self.optimizer = optim.SGD(self.net.parameters(),
                                       lr=0.001,
                                       momentum=0.9)
 def projection_shortcut(inputs):
     return Net.conv2d(inputs=inputs,
                       kernel_shape=(1, 1, inputs.shape[-1],
                                     filters_out),
                       strides=strides,
                       padding='SAME',
                       activation_func=tf.identity,
                       layer_name='projection')
    def _building_block(inputs, filters, training, projection_shortcut,
                        strides, name: str):
        """
        :param inputs: A tensor of size[batch, height_in, width_in, channels]
        :param filters:  The number of filters for the first convolution of the layer.
        :param training: Either True or False, whether we are currently training the
            model. Needed for batch norm.
        :param projection_shortcut: The function to use for projection shortcuts
            (typically a 1x1 convolution when downsampling the input).
          strides: The block's stride. If greater than 1, this block will ultimately
            downsample the input.
        :param strides: The block's stride. If greater than 1, this block will ultimately
            downsample the input.
        :param name: A string name for the tensor output of the block layer.
        :return: The output tensor of the block; shape should match inputs.
        """
        with tf.variable_scope(name):
            shortcut = inputs
            inputs = Net.batch_normalization(inputs, training)
            inputs = tf.nn.relu(inputs)

            # The projection shortcut should come after the first batch norm and ReLU
            # since it performs a 1x1 convolution.
            if projection_shortcut is not None:
                shortcut = projection_shortcut(inputs)

            inputs = Net.conv2d(inputs=inputs,
                                kernel_shape=(3, 3, inputs.shape[-1], filters),
                                strides=strides,
                                padding='SAME',
                                activation_func=tf.identity,
                                layer_name='conv1_building_block')

            inputs = Net.batch_normalization(inputs, training)
            inputs = tf.nn.relu(inputs)
            inputs = Net.conv2d(inputs=inputs,
                                kernel_shape=(3, 3, inputs.shape[-1], filters),
                                strides=1,
                                padding='SAME',
                                activation_func=tf.identity,
                                layer_name='conv2_building_block')
            return inputs + shortcut
예제 #6
0
def main():
    DIR = "C:/Users/roger/git/wiener-impact-model/data/test8augmented"
    net = Net()

    train_dataset = Test8Augmented(root=DIR, name="Test8Augmented")
    train_loader = DataLoader(train_dataset, batch_size=5)
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=5e-4)

    # Treinamento
    losses = []
    for epoch in range(5):
        running_loss = 0.0
        for i, data in enumerate(train_loader):
            optimizer.zero_grad()
            outputs = net(data)
            loss = F.mse_loss(outputs, data.y)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
        losses.append(running_loss)
        # print("Epoch: {} - Running Loss: {}".format(epoch + 1, running_loss))
    # Teste
    erro = []
    predicted = []
    target = []
    for data in train_loader:
        for e in net(data):
            predicted.append(e.item())
        for e in data.y:
            target.append(e.item())
        for e, i in zip(net(data), data.y):
            erro.append(F.mse_loss(e, i).item())
    print("MSE: {}".format(sum(erro) / len(erro)))

    plt.subplot(2, 1, 1)
    plt.plot(losses)
    plt.subplot(2, 1, 2)
    plt.plot(predicted)
    plt.plot(target)
    plt.show()
예제 #7
0
def predict():
    model = Net(model_name).to(device)
    model_save_path = os.path.join(config.model_path,
                                   '{}.bin'.format(model_name))
    model.load_state_dict(torch.load(model_save_path))

    data_len = len(os.listdir(config.image_test_path))
    test_path_list = [
        '{}/{}.jpg'.format(config.image_test_path, x)
        for x in range(0, data_len)
    ]
    test_data = np.array(test_path_list)
    test_dataset = MyDataset(test_data, test_transform, 'test')
    test_loader = DataLoader(test_dataset,
                             batch_size=config.batch_size,
                             shuffle=False)

    model.eval()
    pred_list = []
    with torch.no_grad():
        for batch_x, _ in tqdm(test_loader):
            batch_x = batch_x.to(device)
            # compute output
            logits = model(batch_x)
            preds = torch.argmax(logits, dim=1)
            pred_list += [p.cpu().data.numpy() for p in preds]

    submission = pd.DataFrame({
        "id": range(len(pred_list)),
        "label": pred_list
    })
    submission.to_csv('submission.csv', index=False, header=False)
예제 #8
0
def test(**kwargs):
    config.parse(kwargs)
    test_loader = DataLoader(
        WholeFaceDatasets(config.whole_csv_test, config.whole_imgs_base_dir, train=False, transform=transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])), batch_size=config.batch_size, shuffle=False,
        num_workers=config.num_workers
    )

    model = Net()
    if config.using_pretrain_model:
        model.load_state_dict(torch.load(config.pretrain_model_path))
    model.cuda()
    model.eval()

    test_loss = 0
    tables = None
    for data, target in test_loader:
        target = target.type(torch.FloatTensor)
        data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        # print(output)
        loss = F.l1_loss(output, target).cpu()

        a = output.cpu().data.numpy()
        b = np.reshape(target.cpu().data.numpy(), (-1, 1))
        pair = np.hstack((a, b))
        if tables is None:
            tables = pair
        else:
            tables = np.vstack((tables, pair))

        test_loss += loss.data[0] * config.batch_size
    test_loss /= len(test_loader.dataset)
    # print(tables)
    np.save('predicted_and_real.npy', tables)

    print(f'Testing Accuracy is {test_loss}')
예제 #9
0
def main(args):
    if args.output_dir:
        mkdir(args.output_dir)

    print(args)

    if 'cuda' in args.device and torch.cuda.is_available():
        device = torch.device("cuda:0")
        torch.backends.cudnn.benchmark = True
    else:
        device = torch.device('cpu')

    datasets, dataloaders = load_data(args.data_path,
                                      batch_size=args.batch_size,
                                      num_workers=args.workers)

    print("Creating model")
    model = Net(num_classes=datasets['train'].num_classes).to(device)
    print(device)
    criterion, optimizer, lr_scheduler = setup_optim(model, args)
    logger = Logger(len(dataloaders['train']))
    trainer = Trainer(model, criterion, optimizer, lr_scheduler, device,
                      logger, args.print_freq)
    metrics = get_metrics(criterion)
    evaluator = Evaluator(trainer.trainer_engine, model, metrics,
                          dataloaders['val'], device, logger)
    if args.test_only:
        evaluator.run()
        return

    print("Start training")
    start_time = time.time()
    trainer.run(dataloaders['train'], args.epochs)
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
예제 #10
0
def train(train_data, val_data, fold_idx=None):
    train_data = MyDataset(train_data, train_transform)
    train_loader = DataLoader(train_data,
                              batch_size=config.batch_size,
                              shuffle=True)

    val_data = MyDataset(val_data, val_transform)
    val_loader = DataLoader(val_data,
                            batch_size=config.batch_size,
                            shuffle=False)

    model = Net(model_name).to(device)
    # criterion = nn.CrossEntropyLoss()
    criterion = FocalLoss(0.5)
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.1)

    if fold_idx is None:
        print('start')
        model_save_path = os.path.join(config.model_path,
                                       '{}.bin'.format(model_name))
    else:
        print('start fold: {}'.format(fold_idx + 1))
        model_save_path = os.path.join(
            config.model_path, '{}_fold{}.bin'.format(model_name, fold_idx))
    if os.path.isfile(model_save_path):
        print('加载之前的训练模型')
        model.load_state_dict(torch.load(model_save_path))

    best_val_acc = 0
    last_improved_epoch = 0
    adjust_lr_num = 0
    for cur_epoch in range(config.epochs_num):
        start_time = int(time.time())
        model.train()
        print('epoch:{}, step:{}'.format(cur_epoch + 1, len(train_loader)))
        cur_step = 0
        for batch_x, batch_y in train_loader:
            batch_x, batch_y = batch_x.to(device), batch_y.to(device)

            optimizer.zero_grad()
            probs = model(batch_x)

            train_loss = criterion(probs, batch_y)
            train_loss.backward()
            optimizer.step()

            cur_step += 1
            if cur_step % config.train_print_step == 0:
                train_acc = accuracy(probs, batch_y)
                msg = 'the current step: {0}/{1}, train loss: {2:>5.2}, train acc: {3:>6.2%}'
                print(
                    msg.format(cur_step, len(train_loader), train_loss.item(),
                               train_acc[0].item()))
        val_loss, val_acc = evaluate(model, val_loader, criterion)
        if val_acc >= best_val_acc:
            best_val_acc = val_acc
            torch.save(model.state_dict(), model_save_path)
            improved_str = '*'
            last_improved_epoch = cur_epoch
        else:
            improved_str = ''
        msg = 'the current epoch: {0}/{1}, val loss: {2:>5.2}, val acc: {3:>6.2%}, cost: {4}s {5}'
        end_time = int(time.time())
        print(
            msg.format(cur_epoch + 1, config.epochs_num, val_loss, val_acc,
                       end_time - start_time, improved_str))
        if cur_epoch - last_improved_epoch > config.patience_epoch:
            print("No optimization for a long time, adjust lr...")
            scheduler.step()
            last_improved_epoch = cur_epoch  # 加上,不然会连续更新的
            adjust_lr_num += 1
            if adjust_lr_num > config.adjust_lr_num:
                print("No optimization for a long time, auto stopping...")
                break
    del model
    gc.collect()
예제 #11
0
def test_train_net_output():
    net = Net()
    x = torch.randn(1, 1, 28, 28)
    y = net(x)
    assert y.size() == (1, 10)
예제 #12
0
                    '-r',
                    default=None,
                    help='checkpoint file name. It ends with .ckpt')
args = parser.parse_args()

use_cuda = 'cuda' if torch.cuda.is_available() else 'cpu'

run_id = uuid1()
comment = "lr_" + str(args.learning_rate) + "_de_" + str(
    args.decay) + "_dg_" + str(args.decay_gamma) + "_e_" + str(
        args.epochs) + "_b_" + str(args.batch) + "_o_" + str(args.optimizer)
best_acc = 0

sw = SummaryWriter(log_dir=args.log_dir + "/" + str(run_id), comment=comment)

net = Net()

if use_cuda == 'cuda':
    ltype = torch.cuda.LongTensor
    ftype = torch.cuda.FloatTensor
    net = net.cuda()
    # net = torch.nn.DataParallel(net)
    cudnn.benchmark = True
else:
    ltype = torch.LongTensor
    ftype = torch.FloatTensor

dummy_input = torch.randn(1, 1, 28, 28)

if args.resume:
    print('==> Resuming from checkpoint..')
예제 #13
0
def get_model(opts):
    if opts.model=="ssdlitemn2":
        model = Net(SSDLiteMN2(width_mult=opts.model_width))
        return model, train_ssd, MultiboxLoss

    raise Exception("Model unknown:", opts.model)
예제 #14
0
파일: main.py 프로젝트: serryuer/ts_predict
                          batch_size=args.batch_size,
                          shuffle=True)
test_loader = DataLoader(test_dataset,
                         batch_size=args.test_batch_size,
                         shuffle=True)

args.cuda = args.device != -1 and torch.cuda.is_available()

print('Parameters:')
for attr, value in sorted(args.__dict__.items()):
    print('\t{}={}'.format(attr.upper(), value))

logging.info(f"train data all steps: {len(train_loader)}, " +
             f"test data all steps : {len(test_loader)}")

model = Net(args)
# model = DataParallel(model)
if args.cuda:
    model = model.cuda(args.device)

# Prepare  optimizer and schedule(linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [{
    'params': [
        p for n, p in model.named_parameters()
        if not any(nd in n for nd in no_decay)
    ],
    'weight_decay':
    0.0
}, {
    'params': [
예제 #15
0
def train(**kwargs):
    config.parse(kwargs)
    writer = SummaryWriter(config.logs_dir)
    train_loader = DataLoader(
        WholeFaceDatasets(config.whole_csv_train, config.whole_imgs_base_dir, train=True, transform=transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])), batch_size=config.batch_size, shuffle=True,
        num_workers=config.num_workers
    )

    test_loader = DataLoader(
        WholeFaceDatasets(config.whole_csv_test, config.whole_imgs_base_dir, train=False, transform=transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])), batch_size=config.batch_size, shuffle=False,
        num_workers=config.num_workers
    )

    weights_vector = Variable(torch.arange(0, 101)).view(-1, 1).cuda()
    model = Net()
    if config.using_pretrain_model:
        model.load_state_dict(torch.load(config.pretrain_model_path))
    model.cuda()

    fc_params = list(map(id, model.fc.parameters()))
    base_params = filter(lambda p: id(p) not in fc_params, model.parameters())

    optimizer = optim.SGD([{'params': base_params},
                           {'params': model.fc.parameters(), 'lr': config.fc_learning_rate}],
                          lr=config.learning_rate, weight_decay=config.weight_decay, momentum=config.momentum)

    scheduler = StepLR(optimizer, step_size=config.decay_epoches, gamma=config.decay_gamma)

    for epoch in range(config.epoch):
        scheduler.step()
        model.train()
        # print learning rate
        # for param_group in optimizer.param_groups:
        #     print(param_group['lr'], end='\t')
        # print('\n')

        for batch_idx, (data, target) in enumerate(train_loader):
            target = target.type(torch.FloatTensor)
            data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)
            optimizer.zero_grad()

            output = model(data)

            loss = F.l1_loss(output, target)
            loss.backward()
            optimizer.step()

            if batch_idx % config.log_interval == 0:
                # writer.add_scalar('train/loss', loss.data[0],
                #                 (epoch - 1) * len(train_loader.dataset) + batch_idx * config.batch_size)
                print(
                    f'Train Epoch: {epoch} [{batch_idx*len(data)}/{len(train_loader.dataset)} ({100 * batch_idx/len(train_loader):.0f}%)]\tLoss: {loss.data[0]:.6f}')

        # if epoch % config.checkpoint_interval == 0:
        #     torch.save(model.state_dict(), os.path.join(config.checkpoint_dir, f'checkpoint_whole3-{epoch}.pth'))

        val(epoch, writer, test_loader, model)
    writer.close()
예제 #16
0
 def __build_model(self):
     dropout = self.hparams.get('dropout', 0.0)
     loss_func = self.hparams.get('loss_func', nn.CrossEntropyLoss())
     hidden_dim = self.hparams.get('hidden_dim', 128)
     return Net(768, self.output_dim, loss_func, hidden_dim, dropout)
예제 #17
0
def main():
    global device, cfg
    args = parse_args()
    cfg = Config.from_file(args.config)

    out = cfg.train.out
    if not os.path.exists(out):
        os.makedirs(out)

    # save config and command
    commands = sys.argv
    with open(f'{out}/command.txt', 'w') as f:
        f.write('## Command ################\n\n')
        f.write(f'python {commands[0]} ')
        for command in commands[1:]:
            f.write(command + ' ')
        f.write('\n\n\n')
        f.write('## Args ###################\n\n')
        for name in vars(args):
            f.write(f'{name} = {getattr(args, name)}\n')

    shutil.copy(args.config, f'./{out}')

    # Log
    logdir = os.path.join(out, 'log')
    if not os.path.exists(logdir):
        os.makedirs(logdir)
    writer = SummaryWriter(log_dir=logdir)

    # Set device
    cuda = torch.cuda.is_available()
    if cuda and args.gpu >= 0:
        print('# cuda available! #')
        device = torch.device(f'cuda:{args.gpu}')
    else:
        device = 'cpu'

    # Set models
    VGG = vgg.VGG
    VGG.load_state_dict(torch.load(args.vgg))
    VGG = torch.nn.Sequential(*list(VGG.children())[:31])
    model = Net(VGG)
    model.to(device)

    # Prepare dataset
    content_dataset = FaceDataset(cfg, cfg.train.content_dataset)
    content_loader = torch.utils.data.DataLoader(
        content_dataset,
        batch_size=cfg.train.batchsize,
        shuffle=True,
        num_workers=min(cfg.train.batchsize, 16),
        pin_memory=True,
        drop_last=True)
    style_dataset = FaceDataset(cfg, cfg.train.style_dataset)
    style_loader = torch.utils.data.DataLoader(
        style_dataset,
        batch_size=cfg.train.batchsize,
        sampler=InfiniteSamplerWrapper(style_dataset),
        num_workers=0,
        pin_memory=True,
        drop_last=True)
    style_iter = iter(style_loader)
    print(f'content dataset contains {len(content_dataset)} images.')
    print(f'style dataset contains {len(style_dataset)} images.')

    opt = Adam(model.decoder.parameters(),
               lr=cfg.train.parameters.lr,
               betas=(0.5, 0.999))

    iteration = 0
    batchsize = cfg.train.batchsize
    iterations_per_epoch = len(content_loader)
    epochs = cfg.train.iterations // iterations_per_epoch
    for epoch in range(epochs):
        for i, batch in enumerate(content_loader):
            model.train()

            content_images = Variable(batch).to(device)
            style_images = Variable(next(style_iter)).to(device)

            loss_c, loss_s = model(content_images, style_images)
            loss = cfg.train.parameters.lam_c * loss_c + cfg.train.parameters.lam_s * loss_s

            opt.zero_grad()
            loss.backward()
            opt.step()

            writer.add_scalar('loss_content', loss_c.item(), iteration + 1)
            writer.add_scalar('loss_style', loss_s.item(), iteration + 1)

            lr = poly_lr_scheduler(opt,
                                   cfg.train.parameters.lr,
                                   iteration,
                                   lr_decay_iter=10,
                                   max_iter=cfg.train.iterations)
            iteration += 1

            if iteration % cfg.train.print_interval == 0:
                print(
                    f'Epoch:[{epoch}][{iteration}/{cfg.train.iterations}]  loss content:{loss_c.item():.5f} loss style:{loss_s.item():.5f}'
                )

            if iteration % cfg.train.save_interval == 0:
                if not os.path.exists(os.path.join(out, 'checkpoint')):
                    os.makedirs(os.path.join(out, 'checkpoint'))
                path = os.path.join(out, 'checkpoint',
                                    f'iter_{iteration:04d}.pth.tar')
                state = {
                    'state_dict': model.state_dict(),
                    'opt_state_dict': opt.state_dict(),
                    'iteration': iteration,
                }
                torch.save(state, path)

            if iteration % cfg.train.preview_interval == 0:
                if not os.path.exists(os.path.join(out, 'preview')):
                    os.makedirs(os.path.join(out, 'preview'))
                sample = generate_sample(model, content_images, style_images)
                save_image(
                    sample.data.cpu(),
                    os.path.join(out, 'preview', f'iter_{iteration:04d}.png'))