def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, norm_type='Unknown'): super(_DenseLayer, self).__init__() self.add_module('norm1', get_norm(norm_type, num_input_features)), self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module( 'conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', get_norm(norm_type, bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module( 'conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, norm_type='Unknown', bn_size=4, drop_rate=0, num_classes=1000, use_se=True): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ( 'norm0', get_norm(norm_type, num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d( kernel_size=3, stride=2, padding=1)), ])) if use_se: # Add SELayer at first convolution self.features.add_module("SELayer_0a", SEModule(channels=num_init_features)) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): if use_se: # Add a SELayer self.features.add_module("SELayer_%da" % (i + 1), SEModule(channels=num_features)) block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, norm_type=norm_type, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: if use_se: # Add a SELayer behind each transition block self.features.add_module("SELayer_%db" % (i + 1), SEModule(channels=num_features)) trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2, norm_type=norm_type) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', get_norm(norm_type, num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) self.num_features = num_features # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0)
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_type='Unknown'): super(Bottleneck, self).__init__() width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = get_norm(norm_type, width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = get_norm(norm_type, width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = get_norm(norm_type, planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_type='Unknown'): super(BasicBlock, self).__init__() if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = get_norm(norm_type, planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = get_norm(norm_type, planes) self.downsample = downsample self.stride = stride
def __init__(self, block, layers, num_classes=1000, norm_type='Unknown', zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNetFPN, self).__init__() self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = get_norm(norm_type, self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], norm_type=norm_type) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0], norm_type=norm_type) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1], norm_type=norm_type) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], norm_type=norm_type) self.layer5 = self._make_layer(block, 512, layers[4], stride=2, norm_type=norm_type) self.up2 = nn.ConvTranspose2d(self.inplanes, self.inplanes, 2, stride=2, padding=0, bias=False) self.merge1 = conv3x3(self.inplanes, self.inplanes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(self.inplanes, num_classes) self.num_features = self.inplanes for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0)
def __init__(self, in_channels, out_channels, norm_type='Unknown', **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.norm = get_norm(norm_type, out_channels, eps=0.001)
def __init__(self, num_input_features, num_output_features, norm_type='Unknown'): super(_Transition, self).__init__() self.add_module('norm', get_norm(norm_type, num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=0, bias=True, norm_type='Unknown'): super(Conv2dNormRelu, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size, stride, padding, bias=bias), get_norm(norm_type, out_ch), nn.ReLU(inplace=True))
def make_layers(cfg, batch_norm=False, norm_type='Unknown'): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [ conv2d, get_norm(norm_type, v), nn.ReLU(inplace=True) ] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False, norm_type='Unknown'): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), get_norm(norm_type, planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_type)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_type=norm_type)) return nn.Sequential(*layers)