예제 #1
0
 def __init__(self,
              in_channels,
              num_anchors,
              num_classes,
              num_layers,
              pyramid_levels=5,
              onnx_export=False):
     super(Classifier, self).__init__()
     self.num_anchors = num_anchors
     self.num_classes = num_classes
     self.num_layers = num_layers
     self.conv_list = nn.ModuleList([
         SeparableConvBlock(in_channels,
                            in_channels,
                            norm=False,
                            activation=False) for i in range(num_layers)
     ])
     self.bn_list = nn.ModuleList([
         nn.ModuleList([
             nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3)
             for i in range(num_layers)
         ]) for j in range(pyramid_levels)
     ])
     self.header = SeparableConvBlock(in_channels,
                                      num_anchors * num_classes,
                                      norm=False,
                                      activation=False)
     self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
예제 #2
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio
                       is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp,
                                       out_channels=oup,
                                       kernel_size=1,
                                       bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup,
                                       momentum=self._bn_mom,
                                       eps=self._bn_eps)
        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup,
            out_channels=oup,
            groups=oup,  # groups makes it depthwise
            kernel_size=k,
            stride=s,
            bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup,
                                   momentum=self._bn_mom,
                                   eps=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(
                1,
                int(self._block_args.input_filters *
                    self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup,
                                     out_channels=num_squeezed_channels,
                                     kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels,
                                     out_channels=oup,
                                     kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup,
                                    out_channels=final_oup,
                                    kernel_size=1,
                                    bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup,
                                   momentum=self._bn_mom,
                                   eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        
        # Build blocks
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            # Update block input and output filters based on depth multiplier.
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))
            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters, stride=1)
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        # Head'efficientdet-d0': 'efficientnet-b0',
        in_channels = self._blocks_args[len(self._blocks_args)-1].output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()
예제 #4
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
     for block in self._blocks:
         block.set_swish(memory_efficient)
예제 #5
0
    def __init__(self,
                 num_channels,
                 conv_channels,
                 first_time=False,
                 epsilon=1e-4,
                 onnx_export=False,
                 attention=True,
                 use_p8=False):
        """

        Args:
            num_channels:
            conv_channels:
            first_time: whether the input comes directly from the efficientnet,
                        if True, downchannel it first, and downsample P5 to generate P6 then P7
            epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon
            onnx_export: if True, use Swish instead of MemoryEfficientSwish
        """
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        self.use_p8 = use_p8

        # Conv layers
        self.conv6_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv5_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv4_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv3_up = SeparableConvBlock(num_channels,
                                           onnx_export=onnx_export)
        self.conv4_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        self.conv5_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        self.conv6_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        self.conv7_down = SeparableConvBlock(num_channels,
                                             onnx_export=onnx_export)
        if use_p8:
            self.conv7_up = SeparableConvBlock(num_channels,
                                               onnx_export=onnx_export)
            self.conv8_down = SeparableConvBlock(num_channels,
                                                 onnx_export=onnx_export)

        # Feature scaling layers
        self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')

        self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)
        if use_p8:
            self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest')
            self.p8_downsample = MaxPool2dStaticSamePadding(3, 2)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

        self.first_time = first_time
        if self.first_time:
            self.p5_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

            self.p5_to_p6 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                MaxPool2dStaticSamePadding(3, 2))
            self.p6_to_p7 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2))
            if use_p8:
                self.p7_to_p8 = nn.Sequential(MaxPool2dStaticSamePadding(3, 2))

            self.p4_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

        # Weight
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32),
                                  requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32),
                                  requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32),
                                  requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32),
                                  requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention