def __import_beacons(self, lines): """ Importe les donnees relative aux balises a partir d un fichier texte passe en entree et les stocke dans la BDD :param lines: fichier texte contenant les balises a importer :return: None """ logging.debug("Importation des balises") l_beacons = self.__line_search(lines, "NBeacons:", "########## Layers") if l_beacons == []: print("Aucune balise dans le fichier") for beacon in l_beacons: # Attention: la position est une str ici, pas un entier (b_name, b_x_pos, b_y_pos) = beacon.split()[0:3] ### chercher du becon r_beacon = self.session.query(mod.Beacon)\ .filter(mod.Beacon.name==b_name)\ .first() if r_beacon is None: # Ajout de la balise a la bdd si elle n'y est pas deja r_beacon = mod.Beacon(name = b_name, pos_x = int(b_x_pos)/8.0, pos_y = int(b_y_pos)/8.0) else: # Cas ou une balise portant le meme nom est dans la bdd r_beacon.pos_x = int(b_x_pos)/8.0 r_beacon.pos_y = int(b_y_pos)/8.0 self.session.add(r_beacon) logging.debug("%d balises ont été importées" % len(l_beacons))
def initdb(username, password): db.create_all() import binascii u = models.User(email=username, password_hash=bcrypt.generate_password_hash(binascii.hexlify(password)), role=0, status=1) db.session.add(u) db.session.commit() print 'Database initialized.' # remove below for production t = models.Target(name='demo', guid='aedc4c63-8d13-4a22-81c5-d52d32293867') db.session.add(t) db.session.commit() b = models.Beacon(target_guid='aedc4c63-8d13-4a22-81c5-d52d32293867', agent='HTML', ip='1.2.3.4', port='80', useragent='Mac OS X', comment='this is a comment.', lat='38.2531419', lng='-85.7564855', acc='5') db.session.add(b) db.session.commit() b = models.Beacon(target_guid='aedc4c63-8d13-4a22-81c5-d52d32293867', agent='HTML', ip='5.6.7.8', port='80', useragent='Mac OS X', comment='this is a comment.', lat='34.855117', lng='-82.114192', acc='1') db.session.add(b) db.session.commit()
train_generator = utils.seq_batch_generator(training_instances, item_dict, config.batch_size) validate_generator = utils.seq_batch_generator(validate_instances, item_dict, config.batch_size, False) test_generator = utils.seq_batch_generator(testing_instances, item_dict, config.batch_size, False) # Initialize the network print(" + Initialize the network") net = models.Beacon(sess, config.emb_dim, config.rnn_unit, config.alpha, MAX_SEQ_LENGTH, item_probs, adj_matrix, config.top_k, config.batch_size, config.rnn_cell_type, config.dropout_rate, config.seed, config.learning_rate, config.pooling) print(" + Initialize parameters") sess.run(tf.global_variables_initializer()) print("================== TRAINING ====================") print("@Start training") procedure.train_network(sess, net, train_generator, validate_generator, config.nb_epoch, total_train_batches, total_validate_batches, config.display_step, config.early_stopping_k, config.epsilon, tensorboard_dir, model_dir, test_generator, total_test_batches)