def read_data(): import models df = pd.read_csv('udemy_data.csv') for index, _df in df.iterrows(): # date型への変更 date = datetime.datetime.strptime(_df['date'], '%Y/%m/%d').date() row = models.Data(date=date, subscribers=_df['subscribers'], reviews=_df['reviews']) db_session.add(row) db_session.commit()
def getDataInOrange(): data = json.loads(request.data.decode('utf-8')) if len(data) > 0: device_id = data['device_id'] print(data) for sensor in data["sensors"]: print(sensor) sensor_data = models.Data() sensor_data.device_id = device_id sensor_data.sensor_id = sensor['id'] sensor_data.data = sensor['data'] sensor_data.save() return jsonify({'message': 'data send', 'code': 200}) return jsonify({'message': 'dont send data', 'code': 500})
import models LSTM256 = models.LSTM(256, 3) LSTM256.create_model() Data = models.Data([1, 1, 1], 20000, 0.01) Data.getData() LSTM256.fit_model(5, Data) LSTM256.print_stats() LSTM256.model.summary() LSTM256_States = models.States(1100, 1000) LSTM256_States.create_unperturbed(LSTM256, Data) LSTM256_States.create_pertrurbed(LSTM256, Data) print(LSTM256_States.unperturbed - LSTM256_States.perturbed) LSTM256_lyapunov = models.Lyapunov(LSTM256_States) LSTM256_lyapunov.plot_exponent(LSTM256_States) LSTM_Layer = LSTM256.model.layers[0] LSTM_Layer.weights import matplotlib.pyplot as plt plt.plot(np.linspace(1, 10, 20), line)
def parse_implementation_schedule(schedule, out, package_filename): out["last_updated_date"] = datetime.datetime.now() out["publisher_actual"] = schedule.find("metadata").find("publisher").text out["publisher_code_actual"] = schedule.find("metadata").find( "publisher").get("code") out["schedule_version_actual"] = schedule.find("metadata").find( "version").text out["schedule_date_actual"] = schedule.find("metadata").find("date").text out["publisher_original"] = schedule.find("metadata").find( "publisher").text out["publisher_code_original"] = schedule.find("metadata").find( "publisher").get("code") out["schedule_version_original"] = schedule.find("metadata").find( "version").text out["schedule_date_original"] = schedule.find("metadata").find("date").text sched = models.ImpSchedule(**out) db.session.add(sched) db.session.commit() pd = {} #properties come from module properties.py for k, v in properties.properties.items(): try: pd[k] = (eval(v["data"])) except AttributeError: pass for k, v in pd.items(): d = models.ImpScheduleData() d.publisher_id = sched.id d.segment = k d.segment_value_actual = v d.segment_value_original = v db.session.add(d) elements = models.Element.query.all() for element in elements: # element name is element.name for p in (models.Property.query.filter_by( parent_element=element.id).all()): data = models.Data() data.property_id = p.id data.impschedule_id = sched.id if (p.defining_attribute is not None): path = "/[@" + p.defining_attribute + '="' + p.defining_attribute_value + '"]' element_name = element.name + path else: element_name = element.name try: data.status_actual = schedule.find(element.level).find( element_name).find("status").get("category") except AttributeError: pass try: data.exclusions = schedule.find(element.level).find( element_name).find("exclusions").find("narrative").text except AttributeError: pass if (data.exclusions is None): data.exclusions = "" try: data.notes_actual = schedule.find( element.level).find(element_name).find("notes").text except AttributeError: data.notes_actual = "" try: data.date_actual = datetime.datetime.strptime( schedule.find(element.level).find(element_name).find( "publication-date").text, "%Y-%m-%d") except AttributeError: pass data.date_recorded = datetime.datetime.now() db.session.add(data) db.session.commit() return "Done "
def setUp(self): self._data_file = models.Data(filename='test_data.csv')