예제 #1
0
        for k, v in pretrained_dict.items() if k in model_dict
    }
    # del pretrained_dict['classifier.6.bias']
    # del pretrained_dict['classifier.6.weight']

    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--load', help='Resume from checkpoint file')
    args = parser.parse_args()

    for with_coral in [False, True]:
        model = models.DeepCORAL(31)
        # support different learning rate according to CORAL paper
        # i.e. 10 times learning rate for the last two fc layers.
        optimizer = torch.optim.SGD([
            {
                'params': model.sharedNet.parameters()
            },
            {
                'params': model.fc.parameters(),
                'lr': 10 * LEARNING_RATE
            },
        ],
                                    lr=LEARNING_RATE,
                                    momentum=MOMENTUM)

        if CUDA:
예제 #2
0
        k: v
        for k, v in pretrained_dict.items() if k in model_dict
    }
    # del pretrained_dict['classifier.6.bias']
    # del pretrained_dict['classifier.6.weight']

    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--load', help='Resume from checkpoint file')
    args = parser.parse_args()

    model = models.DeepCORAL(31)  # num_classes=31

    # support different learning rate according to CORAL paper
    # i.e. 10 times learning rate for the last two fc layers.
    optimizer = torch.optim.SGD([
        {
            'params': model.sharedNet.parameters()
        },
        {
            'params': model.fc.parameters(),
            'lr': 10 * LEARNING_RATE
        },
    ],
                                lr=LEARNING_RATE,
                                momentum=MOMENTUM)