예제 #1
0
    def __init__(self,
                 width,
                 height,
                 source_img,
                 landmarks_model_path,
                 model3d_path,
                 source_seg=None):
        self.w = width
        self.h = height
        self.detector = dlib.get_frontal_face_detector()
        self.landmarks_model = dlib.shape_predictor(landmarks_model_path)
        self.mean3DShape, self.blendshapes, self.mesh, self.idxs3D, self.idxs2D = \
            utils.load3DFaceModel(model3d_path)
        self.projectionModel = models.OrthographicProjectionBlendshapes(
            self.blendshapes.shape[0])

        landmarks_arr = self.calcLandmarks(source_img)
        if landmarks_arr:
            landmarks = landmarks_arr[0]
        else:
            raise Exception("Couldn't find a face in the source image!")
        textureCoords = self.calcTextureCoords(landmarks)
        self.renderer = face_renderer.FaceRenderer(self.w, self.h, source_img,
                                                   textureCoords, self.mesh,
                                                   source_seg)
예제 #2
0
파일: utils.py 프로젝트: rahbs/inside_clip
def getFaceTextureCoords(img,
                         mean3DShape,
                         blendshapes,
                         idxs2D,
                         idxs3D,
                         detector,
                         predictor,
                         maxImgSizeForDetection=320):
    projectionModel = models.OrthographicProjectionBlendshapes(
        blendshapes.shape[0])

    keypoints = getFaceKeypoints(img, detector, predictor,
                                 maxImgSizeForDetection)[0]
    modelParams = projectionModel.getInitialParameters(mean3DShape[:, idxs3D],
                                                       keypoints[:, idxs2D])
    modelParams = NonLinearLeastSquares.GaussNewton(
        modelParams,
        projectionModel.residual,
        projectionModel.jacobian,
        ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]
          ], keypoints[:, idxs2D]),
        verbose=0)
    textureCoords = projectionModel.fun([mean3DShape, blendshapes],
                                        modelParams)

    return textureCoords
예제 #3
0
def getFaceTextureCoords(img, mean3DShape, blendshapes, idxs2D, idxs3D,
                         openpose):
    projectionModel = models.OrthographicProjectionBlendshapes(
        blendshapes.shape[0])
    arr, arr2, output_image = openpose.forward(img, False)
    for shape2D in arr2:
        keypoints = shape2D[:, :2].T

    modelParams = projectionModel.getInitialParameters(mean3DShape[:, idxs3D],
                                                       keypoints[:, idxs2D])
    modelParams = NonLinearLeastSquares.GaussNewton(
        modelParams,
        projectionModel.residual,
        projectionModel.jacobian,
        ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]
          ], keypoints[:, idxs2D]),
        verbose=0)
    textureCoords = projectionModel.fun([mean3DShape, blendshapes],
                                        modelParams)

    return textureCoords
예제 #4
0
    def process_video(self,
                      in_filename,
                      out_filename,
                      face_filename,
                      keep_audio=True):
        # extract audio clip from src
        if keep_audio == True:
            clip = VideoFileClip(in_filename)
            clip.audio.write_audiofile("./temp/src_audio.mp3", verbose=False)

        predictor_path = "./models/shape_predictor_68_face_landmarks.dat"
        # predictor_path = "./models/shape_predictor_81_face_landmarks.dat"

        # the smaller this value gets the faster the detection will work
        # if it is too small, the user's face might not be detected
        maxImageSizeForDetection = 320

        detector = dlib.get_frontal_face_detector()
        predictor = dlib.shape_predictor(predictor_path)

        mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel(
            "./models/candide.npz")

        projectionModel = models.OrthographicProjectionBlendshapes(
            blendshapes.shape[0])

        # open source video
        vidcap = cv2.VideoCapture(in_filename)

        # get some parameters from input video
        width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(vidcap.get(cv2.CAP_PROP_FPS))
        frames_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

        # create a video writer for output
        res_filename = "./output/" + out_filename
        vidwriter = cv2.VideoWriter(res_filename,
                                    cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
                                    fps, (width, height))

        cameraImg = vidcap.read()[1]

        textureImg = cv2.imread(face_filename)
        textureCoords = utils.getFaceTextureCoords(textureImg, mean3DShape,
                                                   blendshapes, idxs2D, idxs3D,
                                                   detector, predictor)

        renderer = FaceRendering.FaceRenderer(cameraImg, textureImg,
                                              textureCoords, mesh)

        destShapes2D = utils.getFaceKeypoints(cameraImg, detector, predictor,
                                              maxImageSizeForDetection)
        destShape = destShapes2D[0]
        modelParams = projectionModel.getInitialParameters(
            mean3DShape[:, idxs3D], destShape[:, idxs2D])

        # 3D model parameter optimization
        modelParams = NonLinearLeastSquares.GaussNewton(
            modelParams,
            projectionModel.residual,
            projectionModel.jacobian,
            ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]
              ], destShape[:, idxs2D]),
            verbose=0)

        # rendering the model to an image
        destShape3D = utils.getShape3D(mean3DShape, blendshapes, modelParams)

        destRenderedImg = renderer.render(destShape3D)

        self.progressBar.setRange(0, frames_count - 1)

        # iterate over the frames and apply the face swap
        for i in tqdm(range(frames_count - 1)):

            success, cameraImg = vidcap.read()

            self.progressBar.setValue(i + 1)

            if success != True:
                # no frames left => break
                break

            shapes2D = utils.getFaceKeypoints(cameraImg, detector, predictor,
                                              maxImageSizeForDetection)
            newImg = cameraImg
            try:

                if shapes2D is not None:
                    for shape2D in shapes2D:
                        # 3D model parameter initialization
                        modelParams = projectionModel.getInitialParameters(
                            mean3DShape[:, idxs3D], shape2D[:, idxs2D])

                        # 3D model parameter optimization
                        modelParams = NonLinearLeastSquares.GaussNewton(
                            modelParams,
                            projectionModel.residual,
                            projectionModel.jacobian, ([
                                mean3DShape[:, idxs3D], blendshapes[:, :,
                                                                    idxs3D]
                            ], shape2D[:, idxs2D]),
                            verbose=0)

                        # rendering the model to an image
                        shape3D = utils.getShape3D(mean3DShape, blendshapes,
                                                   modelParams)
                        renderedImg = renderer.render(shape3D)

                        # blending of the rendered face with the image
                        mask = np.copy(renderedImg[:, :, 0])
                        mask1 = np.copy(destRenderedImg[:, :, 0])
                        renderedImg = ImageProcessing.colorTransfer(
                            cameraImg, renderedImg, mask)
                        # newImg = ImageProcessing.blendImages(renderedImg, cameraImg, mask)
                        newImg = ImageProcessing.blendImages0(
                            renderedImg, cameraImg, mask, mask1)
            except:
                pass

            vidwriter.write(newImg)

        # releas video capture and writer
        vidcap.release()
        vidwriter.release()
        renderer.release()

        # apply audio clip to generated video
        if keep_audio == True:
            video = VideoFileClip("./output/proc_video.avi")
            video.write_videofile(out_filename,
                                  audio="./output/src_audio.mp3",
                                  progress_bar=False,
                                  verbose=False)
예제 #5
0
#if it is too small, the user's face might not be detected
maxImageSizeForDetection = 320

#카메라로 찍히는 영상에서 얼굴을 찾는 detector
detector = dlib.get_frontal_face_detector()
#사람 얼굴을 찾는 입과 눈의 구석, 코의 끝과 같은 중요한 얼굴 표식의 위치를 식별하는 점들의 집합
predictor = dlib.shape_predictor(predictor_path)
# candide = 3D face model source
# mean3Dshape : 얼굴의 중립상태에 해당하는 정점 리스트
# blendshapes : 중립상태인 얼굴에서 추가하여 수정할 수 있는 얼굴
	# ex) 미소, 눈썹 올라가는 부분
	# candide에 정의된 애니메이션 Units에서 파생된다.
# mesh : Candide가 얼굴 목록으로 제공한 원래의 mesh
# idxs3D, idxs2D: Candide 모델(idxs3D)과 얼굴 정렬점 세트(idxs2D)사이에 해당하는 지점들의 인덱스들이다.
mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel("../candide.npz")
projectionModel = models.OrthographicProjectionBlendshapes(blendshapes.shape[0])

def movement_detection():
	ret, frame1 = cv2.VideoCapture(VIDEO_CAPTURE_CAM_NUM).read()
	frame1 =  cv2.resize(frame1, (100, 50))
	prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
	hsv = np.zeros_like(frame1)
	hsv[...,1] = 255

	mov_check_cap = cv2.VideoCapture(VIDEO_CAPTURE_CAM_NUM)
	while(True):
		ret, frame2 = mov_check_cap.read()
		frame2 =  cv2.resize(frame2, (100, 50))
		next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
		flow = cv2.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
		mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
예제 #6
0
def mix_video():
    data = {}
    if os.path.getsize('global.pickle') > 0:
        with open('global.pickle', 'rb') as pf:
            data = pickle.load(pf)
    else:
        win32api.MessageBox(0, '값이 제대로 전달되지 않았습니다. 처음부터 다시 시작해주세요', 'warning',
                            0x00001000)
        sys.exit(0)

    backgroundvideo = "testvideo1"

    genderNum = data['gender']
    backgroundvideo = data['backgroundvideo']
    userfolder = data['userfolder']
    personnumber = data['personnumber']
    backgroundvideo_name = data['backgroundvideo_name']

    print('gender:', genderNum, 'vid_dir:', backgroundvideo, 'user_dir:',
          userfolder, 'peonson#:', personnumber, 'vid_name:',
          backgroundvideo_name)

    user_shape_data = {}
    with open("input/" + userfolder + "/" + 'userdata.pickle', 'rb') as pf:
        user_shape_data = pickle.load(pf)

    print(
        "Press T to draw the keypoints and the 3D model")  # 결과 영상에 얼굴합성 과정 표시
    print("Press R to start recording to a video file")  # 녹화

    # shape_predictor_64_face_landmarks.dat 여기서 다운받아서 압축해제
    # http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2rr

    # 키포인트 인식 모델
    predictor_path = "data/shape_predictor_68_face_landmarks.dat"

    # 이미지 사이즈가 작을수록 처리속도가 빨라짐
    # 너무 작으면 얼굴 인식이 안됨
    maxImageSizeForDetection = 320

    # 얼굴 인식기 로드
    detector = dlib.get_frontal_face_detector()
    # detector = dlib.cnn_face_detection_model_v1("data/mmod_human_face_detector.dat")
    predictor = dlib.shape_predictor(predictor_path)
    mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel(
        "data/candide.npz")
    projectionModel = models.OrthographicProjectionBlendshapes(
        blendshapes.shape[0])

    modelParams = None
    lockedTranslation = False
    drawOverlay = False
    writer = None

    # 콤비네이션: VC:Video,Cam | CI: Cam,Image | CC: Cam, Cam | VI: Video,Image
    cap_background = cv2.VideoCapture(backgroundvideo)  # Video for background
    # cap_background = cv2.VideoCapture("input/" + backgroundvideo + ".mp4")  # Video for background

    # cap_background = cv2.VideoCapture(0) # WebCAM for background
    cameraImg = cap_background.read()[1]

    # 본인의 여러 얼굴을 메모리에 저장함 (0~9)
    textureImgs = []
    for i in range(0, 9):
        textureImgs.append(
            cv2.imread("input/" + userfolder + "/" + str(i) +
                       ".jpg"))  # Image for face
        # textureImgs.append(cv2.imread("input/user_test1_images/" + str(i) + ".jpg"))  # Image for face

    if not os.path.isdir('output'):
        os.mkdir('output')
    output_video_name = 'output/' + backgroundvideo + '_' + datetime.datetime.now(
    ).strftime('%Y%m%d_%H%M%S') + '.avi'
    writer = cv2.VideoWriter(output_video_name,
                             cv2.VideoWriter_fourcc(*'XVID'), 25,
                             (cameraImg.shape[1], cameraImg.shape[0]), True)

    modelParams = np.zeros(20)
    startTime = time.time()
    full_shapes2D_csv = selectGender.reading_csv(backgroundvideo_name +
                                                 "_annotation")
    # full_shapes2D_csv = selectGender.reading_csv("testvideo1_annotation")

    for framecnt, shapes2D_csv in enumerate(full_shapes2D_csv):
        print("frame number:", framecnt)
        # 배경으로 사용할 영상의 프레임 이미지 읽기
        cap_background.set(cv2.CAP_PROP_POS_FRAMES, framecnt)
        ret, cameraImg = cap_background.read()

        try:
            background_user_shapes2D = utils.getFaceKeypoints(
                cameraImg, detector, predictor, maxImageSizeForDetection)
            if shapes2D_csv is not None:
                # 영상이 끝나면 반복문 탈출
                if ret == False:
                    break

                # textureImg, user_face_angle, user_shapes2D, textureCoords = user_shape_data[utils.getFaceAngle(background_user_shapes2D)]
                # 저장된 유저 얼굴 정보로 부터 해당 각도의 데이터를 가저옴
                background_face_angle = utils.getFaceAngle(
                    background_user_shapes2D)
                print("user_face_angle: {}".format(background_face_angle))
                textureImg = textureImgs[background_face_angle]
                user_shapes2D = utils.getFaceKeypoints(
                    textureImg, detector, predictor, maxImageSizeForDetection)
                textureCoords = utils.getFaceTextureCoords_v2(
                    textureImg, mean3DShape, blendshapes, idxs2D, idxs3D,
                    user_shapes2D, predictor)

                renderer = FaceRendering.FaceRenderer(cameraImg, textureImg,
                                                      textureCoords, mesh)

                for shape2D in background_user_shapes2D:  #[shapes2D_csv]:
                    # 3D 모델 파라미터 초기화 (영상에서 인식된 얼굴로부터 3D 모델 생성을 위해)
                    modelParams = projectionModel.getInitialParameters(
                        mean3DShape[:, idxs3D], shape2D[:, idxs2D])
                    # 3D 모델 파라미터 최적화 기능 (배경의 얼굴과 입력된 얼굴의 키포인트 간의 거리를 최소화 하도록 머신러닝으로 최적화)
                    modelParams = NonLinearLeastSquares.GaussNewton(
                        modelParams,
                        projectionModel.residual,
                        projectionModel.jacobian,
                        ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]
                          ], shape2D[:, idxs2D]),
                        verbose=0)

                    # 위의 모델을 이용해 입력된 이미지의 얼굴을 3D객체로 바꿔 배경의 얼굴 위치로 보정
                    shape3D = utils.getShape3D(mean3DShape, blendshapes,
                                               modelParams)
                    renderedImg = renderer.render(shape3D)

                    # 배경 영상과 입력된 얼굴 이미지를 합성 (합성과정에서 색변환, 이미지 블랜딩 기법 사용)
                    mask = np.copy(renderedImg[:, :, 0])
                    renderedImg = ImageProcessing.colorTransfer(
                        cameraImg, renderedImg, mask)
                    cameraImg = ImageProcessing.blendImages(
                        renderedImg, cameraImg, mask)

                    # 3D매쉬와 키포인트를 화면 위에 그림
                    if drawOverlay:
                        drawPoints(cameraImg, shape2D.T)  # 초록색
                        drawProjectedShape(cameraImg,
                                           [mean3DShape, blendshapes],
                                           projectionModel, mesh, modelParams,
                                           lockedTranslation)

            writer.write(cameraImg)
            # 얼굴 합성된 영상 출력
            cv2.imshow('image', cameraImg)
        except:
            pass

    # 걸린 시간 (초) 출력
    writer.release()
    endTime = time.time() - startTime
    print("endTime: ", endTime)
예제 #7
0
def guide_facechange():
    def tmp():
        print("")

    t = threading.Timer(GUIDE_SHOW_TIME, tmp)
    t.start()

    print("Press T to draw the keypoints and the 3D model")
    print("Press R to start recording to a video file")

    #loading the keypoint detection model, the image and the 3D model
    predictor_path = "../shape_predictor_68_face_landmarks.dat"
    image_name = "../data/jolie.jpg"
    #the smaller this value gets the faster the detection will work
    #if it is too small, the user's face might not be detected
    maxImageSizeForDetection = 320

    #카메라로 찍히는 영상에서 얼굴을 찾는 detector
    detector = dlib.get_frontal_face_detector()
    #사람 얼굴을 찾는 입과 눈의 구석, 코의 끝과 같은 중요한 얼굴 표식의 위치를 식별하는 점들의 집합
    predictor = dlib.shape_predictor(predictor_path)
    # candide = 3D face model source
    # mean3Dshape : 얼굴의 중립상태에 해당하는 정점 리스트
    # blendshapes : 중립상태인 얼굴에서 추가하여 수정할 수 있는 얼굴
    # ex) 미소, 눈썹 올라가는 부분
    # candide에 정의된 애니메이션 Units에서 파생된다.
    # mesh : Candide가 얼굴 목록으로 제공한 원래의 mesh
    # idxs3D, idxs2D: Candide 모델(idxs3D)과 얼굴 정렬점 세트(idxs2D)사이에 해당하는 지점들의 인덱스들이다.
    mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel(
        "../candide.npz")
    #
    projectionModel = models.OrthographicProjectionBlendshapes(
        blendshapes.shape[0])

    modelParams = None
    lockedTranslation = False
    drawOverlay = False
    #cap = cv2.VideoCapture(0)
    cap = cv2.VideoCapture("../ROEM 2014 Spring SUZY 320p.mp4")

    writer = None
    cameraImg = cap.read()[1]  # face swap하여 붙일 영상의 img
    textureImg = cv2.VideoCapture(0).read()[1]  #cv2.imread(image_name)

    print("광고영상 shape : \t\t", cameraImg.shape[1], cameraImg.shape[0])
    print("카메라 캡쳐영상 shape : ", textureImg.shape[1], textureImg.shape[0])

    ###### face detection with guide
    cap_guide_cam = cv2.VideoCapture(0)

    if (cap_guide_cam.isOpened() == False):
        print("Unable to read camera feed")

    frame_width = int(cap_guide_cam.get(3))
    frame_height = int(cap_guide_cam.get(4))
    str = "match your face"
    str2 = "O"
    str3 = "ATTENTION"
    while (True):
        ret, frame = cap_guide_cam.read()
        frame_org = frame

        cv2.putText(frame, str, (int(frame_width / 3), int(frame_height / 6)),
                    cv2.FONT_HERSHEY_SIMPLEX, int(frame_width / 600),
                    (0, 0, 0), int(frame_width / 300))
        cv2.putText(frame, str2, (int(frame_width / 3), int(frame_width / 2)),
                    cv2.FONT_HERSHEY_SIMPLEX, int(frame_width / 60),
                    (0, 0, 255), int(frame_width / 300))
        cv2.putText(frame, str3, (int(
            (frame_width * 2) / 3), int(
                (frame_height * 2) / 3)), cv2.FONT_HERSHEY_SIMPLEX,
                    int(frame_width / 650), (0, 0, 0), int(frame_width / 300))
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

        dets = detector(frame_org, 1)  #처음 camera로 촬영한 캡쳐를 넣어서 얼굴을 찾음.
        if len(dets) > 0:
            print("detected")
            break
        else:
            print("now detecting")

        if not t.isAlive():
            video()
            break

    # 찍은 영상의 캡쳐를 3D로 재구성하여 합침
    textureCoords = utils.getFaceTextureCoords(textureImg, mean3DShape,
                                               blendshapes, idxs2D, idxs3D,
                                               detector, predictor)
    # 찍은 얼굴의 데이터를 영상의 얼굴에 rendering
    renderer = FaceRendering.FaceRenderer(cameraImg, textureImg, textureCoords,
                                          mesh)

    doProcess = False
    meanTime = [[0] * 4 for i in range(4)]

    while True:
        #영상 캡쳐
        cameraImg = cap.read()[1]
        shapes2D = utils.getFaceKeypoints(cameraImg, detector, predictor,
                                          maxImageSizeForDetection)

        doProcess = not doProcess

        if doProcess is not True:
            continue
        else:
            if shapes2D is not None:
                for shape2D in shapes2D:
                    start = timeit.default_timer()
                    #3D model parameter initialization
                    modelParams = projectionModel.getInitialParameters(
                        mean3DShape[:, idxs3D], shape2D[:, idxs2D])
                    stop = timeit.default_timer()
                    meanTime[0][0] += stop - start
                    meanTime[0][1] += 1
                    #print(1, float(meanTime[0][0]/meanTime[0][1]))

                    start = timeit.default_timer()
                    #3D model parameter optimization
                    modelParams = NonLinearLeastSquares.GaussNewton(
                        modelParams,
                        projectionModel.residual,
                        projectionModel.jacobian,
                        ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]
                          ], shape2D[:, idxs2D]),
                        verbose=0)
                    stop = timeit.default_timer()
                    meanTime[1][0] += stop - start
                    meanTime[1][1] += 1
                    #print(2, float(meanTime[1][0]/meanTime[1][1]))

                    start = timeit.default_timer()
                    #rendering the model to an image
                    #다듬기
                    shape3D = utils.getShape3D(mean3DShape, blendshapes,
                                               modelParams)
                    renderedImg = renderer.render(shape3D)
                    stop = timeit.default_timer()
                    meanTime[2][0] += stop - start
                    meanTime[2][1] += 1
                    #print(3, float(meanTime[2][0]/meanTime[2][1]))

                    start = timeit.default_timer()
                    #blending of the rendered face with the image
                    mask = np.copy(renderedImg[:, :, 0])
                    renderedImg = ImageProcessing.colorTransfer(
                        cameraImg, renderedImg, mask)
                    cameraImg = ImageProcessing.blendImages(
                        renderedImg, cameraImg, mask)
                    stop = timeit.default_timer()
                    meanTime[3][0] += stop - start
                    meanTime[3][1] += 1
                    #print(4, float(meanTime[3][0] / meanTime[3][1]))

                    #drawing of the mesh and keypoints
                    # 't'를 누를 때, 적용. facepoint가 표시됨.
                    if drawOverlay:
                        drawPoints(cameraImg, shape2D.T)
                        drawProjectedShape(cameraImg,
                                           [mean3DShape, blendshapes],
                                           projectionModel, mesh, modelParams,
                                           lockedTranslation)

            if writer is not None:
                writer.write(cameraImg)

            cv2.namedWindow("image", cv2.WND_PROP_FULLSCREEN)
            cv2.setWindowProperty("image", cv2.WND_PROP_FULLSCREEN, 1)
            cv2.imshow('image', cameraImg)

            key = cv2.waitKey(1)

            if key == 27 or key == ord('q'):
                break
            if key == ord('t'):
                drawOverlay = not drawOverlay
            if key == ord('r'):
                cv2.destroyAllWindows()
                video()
            if key == ord('w'):
                if writer is None:
                    print("Starting video writer")
                    writer = cv2.VideoWriter(
                        "../out.avi",
                        cv2.VideoWriter_fourcc('X', 'V', 'I', 'D'), 13,
                        (cameraImg.shape[1], cameraImg.shape[0]))

                    if writer.isOpened():
                        print("Writer succesfully opened")
                    else:
                        writer = None
                        print("Writer opening failed")
                else:
                    print("Stopping video writer")
                    writer.release()
                    writer = None

    cap.release()
    cap_intro_vid.release()
    cap_guide_cam.release()
    cv2.destroyAllWindows()
def main():
    os.makedirs('original', exist_ok=True)
    os.makedirs('landmarks', exist_ok=True)
    mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel(
        "candide.npz")
    projectionModel = models.OrthographicProjectionBlendshapes(
        blendshapes.shape[0])
    files = []
    for fl_type in ['png', 'jpg']:
        [
            files.append(fl)
            for fl in glob.glob(args.Directory + '/*.' + fl_type)
        ]

    print(len(files))

    count = 0
    imgParams = {}
    for fl in files:
        frame = cv2.imread(fl)
        print(fl)
        frame_resize = cv2.resize(frame,
                                  None,
                                  fx=1 / DOWNSAMPLE_RATIO,
                                  fy=1 / DOWNSAMPLE_RATIO)
        gray = cv2.cvtColor(frame_resize, cv2.COLOR_BGR2GRAY)
        faces = detector(gray, 1)
        black_image = np.zeros(frame.shape, np.uint8)

        t = time.time()

        # Perform if there is a face detecte
        shapes2D = getFaceKeypoints(frame, detector, predictor)
        if shapes2D is None:
            continue
        if len(shapes2D) == 1:
            # 3D model parameter initialization
            modelParams = projectionModel.getInitialParameters(
                mean3DShape[:, idxs3D], shapes2D[0][:, idxs2D])

            # 3D model parameter optimization
            modelParams = NonLinearLeastSquares.GaussNewton(
                modelParams,
                projectionModel.residual,
                projectionModel.jacobian,
                ([mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]
                  ], shapes2D[0][:, idxs2D]),
                verbose=0)

            drawProjectedShape(black_image, [mean3DShape, blendshapes],
                               projectionModel, mesh, modelParams,
                               lockedTranslation)

            # Display the resulting frame
            imgParams[fl] = modelParams
            count += 1
            print(count)
            cv2.imwrite("original/{}.png".format(count), frame)
            cv2.imwrite("landmarks/{}.png".format(count), black_image)

            print('[INFO] elapsed time: {:.2f}'.format(time.time() - t))

        else:
            print("No face detected")
def main():
    os.makedirs('original', exist_ok=True)
    os.makedirs('landmarks', exist_ok=True)
    mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel("candide.npz")
    projectionModel = models.OrthographicProjectionBlendshapes(blendshapes.shape[0])

    cap = cv2.VideoCapture(args.filename)
    fps = video.FPS().start()

    count = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if frame is None:
            break

        frame_resize = cv2.resize(frame, None, fx=1 / DOWNSAMPLE_RATIO, fy=1 / DOWNSAMPLE_RATIO)
        gray = cv2.cvtColor(frame_resize, cv2.COLOR_BGR2GRAY)
        faces = detector(gray, 1)
        black_image = np.zeros(frame.shape, np.uint8)

        t = time.time()

        # Perform if there is a face detecte
        shapes2D = getFaceKeypoints(frame, detector, predictor)
        if shapes2D is None:
            continue
        if len(shapes2D) == 1:
            # 3D model parameter initialization
            modelParams = projectionModel.getInitialParameters(mean3DShape[:, idxs3D], shapes2D[0][:, idxs2D])

            # 3D model parameter optimization
            modelParams = NonLinearLeastSquares.GaussNewton(modelParams, projectionModel.residual,
                                                            projectionModel.jacobian, (
                                                                [mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]],
                                                                shapes2D[0][:, idxs2D]), verbose=0)

            drawProjectedShape(black_image, [mean3DShape, blendshapes], projectionModel, mesh, modelParams,
                               lockedTranslation)

            # Display the resulting frame
            count += 1
            print(count)
            cv2.imwrite("original/{}.png".format(count), frame)
            cv2.imwrite("landmarks/{}.png".format(count), black_image)
            fps.update()

            print('[INFO] elapsed time: {:.2f}'.format(time.time() - t))

            if count == args.number:  # only take 400 photos
                break
            elif cv2.waitKey(1) & 0xFF == ord('q'):
                break
        else:
            print("No face detected")

    fps.stop()
    print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed()))
    print('[INFO] approx. FPS: {:.2f}'.format(fps.fps()))

    cap.release()
    cv2.destroyAllWindows()
class Visualizer:
    BREAK_KEY_LABELS = "q(Q) or Escape"
    BREAK_KEYS = {ord('q'), ord('Q'), 27}

    mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel(
        "../candide.npz")
    projectionModel = models.OrthographicProjectionBlendshapes(
        blendshapes.shape[0])

    modelParams = None
    lockedTranslation = False
    drawOverlay = False
    # cap = cv2.VideoCapture('/dev/video0')
    writer = None

    image_name = "../data/AK-2.jpeg"
    textureImg = cv2.imread(image_name)

    #loading the keypoint detection model, the image and the 3D model
    predictor_path = "../shape_predictor_68_face_landmarks.dat"
    # image_name = "../data/jolie.jpg"
    image_name = "../data/AK-2.jpeg"
    #the smaller this value gets the faster the detection will work
    #if it is too small, the user's face might not be detected
    maxImageSizeForDetection = 320

    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(predictor_path)

    def __init__(self, args):

        # self.cameraImg = self.input_stream.read()[1]

        self.frame_processor = FrameProcessor(args)
        self.display = not args.no_show
        self.print_perf_stats = args.perf_stats
        self.frame_time = 0
        self.frame_start_time = 0
        self.fps = 0
        self.frame_num = 0
        self.frame_count = -1
        self.frame_timeout = 0 if args.timelapse else 1

        # self.eye_brow_obj = EyeBrows()

        self.eye_brow_right = cv2.imread(
            "images/eyebrows/e5.png")  #, self.eye_brow_obj.get_image()
        self.eye_brow_left = cv2.flip(self.eye_brow_right, 1)

        # self.frame_dict = {}

        # print(type(self.eye_brow_right))
        # print(self.eye_brow_right.shape)
        # print(self.eye_brow_right)

        # self.eye_brow_right = cv2.imread(r"D:\.openvino\fd\Images\eyebrows\e1 (5)_.png")
        # self.eye_brow_right = self.eye_brow_right
        # _, self.eye_brow_right = cv2.threshold(self.eye_brow_right, 250 , 0 , cv2.THRESH_BINARY)
        # self.eye_brow_right = cv2.flip(self.eye_brow_left,1)
        # self.eye_brow_left = cv2.cvtColor(self.eye_brow_left,cv2.COLOR_RGB2HSV)

    def fliped(self, frame):
        return cv2.flip(frame, 1)

    def get_distance(self, b, a):
        print(b, a)
        distance = abs(b - a)
        # time.sleep(10)
        distance = map(int, distance)
        print(distance)
        return tuple(distance)

    def get_angle(self, b, a):

        c = np.array([a[0], b[1]])
        ba = a - b
        bc = c - b

        cosine_angle = np.dot(ba,
                              bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
        angle = np.degrees(np.arccos(cosine_angle))
        angle = angle if b[1] >= a[1] else 360 - angle
        # ####print(angle,'----------------------------------angle--')
        #time.sleep(10)
        return angle

    def rotateImage(self, image, angle, frame='left'):
        angle = angle if angle > 0 else 360 + angle

        #print(angle)
        image_center = tuple(np.array(image.shape[1::-1]) / 2)
        rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
        result = cv2.warpAffine(image,
                                rot_mat,
                                image.shape[1::-1],
                                flags=cv2.INTER_LINEAR)
        # cv2.imshow(frame,result)
        # cv2.waitKey(100)
        return result

    def update_fps(self):
        now = time.time()
        self.frame_time = now - self.frame_start_time
        self.fps = 1.0 / self.frame_time
        self.frame_start_time = now

    def draw_text_with_background(self,
                                  frame,
                                  text,
                                  origin,
                                  font=cv2.FONT_HERSHEY_SIMPLEX,
                                  scale=1.0,
                                  color=(0, 0, 0),
                                  thickness=1,
                                  bgcolor=(255, 255, 255)):
        text_size, baseline = cv2.getTextSize(text, font, scale, thickness)
        cv2.rectangle(
            frame, tuple((origin + (0, baseline)).astype(int)),
            tuple((origin + (text_size[0], -text_size[1])).astype(int)),
            bgcolor, cv2.FILLED)
        cv2.putText(frame, text, tuple(origin.astype(int)), font, scale, color,
                    thickness)
        return text_size, baseline

    def draw_detection_roi(self, frame, roi, identity):

        # Draw face ROI border
        cv2.rectangle(frame, tuple(roi.position),
                      tuple(roi.position + roi.size), (0, 220, 0), 2)

    def draw_detection_keypoints(self, frame, roi, landmarks, head_pose):
        keypoints = [
            landmarks.one,
            #landmarks.two,
            landmarks.three,
            landmarks.four,
            #landmarks.five,
            landmarks.six
        ]

        print('.', end='')
        for point in keypoints:
            #print("point------", point, roi.position, roi.size)
            center = roi.position + roi.size * point
            # print("center------", center)
            cv2.circle(frame, tuple(center.astype(int)), 2, (0, 255, 255), 2)

    def draw_face_mesh(self, frame, roi, landmarks, head_pose):

        # print('draw_face_mesh-------------------')

        if self.shapes2D is not None:
            for shape2D in self.shapes2D:

                print(shape2D[0], len(shape2D[0])
                      )  # list of [[x1,x2,x3.....xn],[y1,y2,y3.....yn]]
                #3D model parameter initialization
                modelParams = self.projectionModel.getInitialParameters(
                    self.mean3DShape[:, self.idxs3D], shape2D[:, self.idxs2D])

                #3D model parameter optimization
                modelParams = NonLinearLeastSquares.GaussNewton(
                    modelParams,
                    self.projectionModel.residual,
                    self.projectionModel.jacobian, ([
                        self.mean3DShape[:, self.idxs3D],
                        self.blendshapes[:, :, self.idxs3D]
                    ], shape2D[:, self.idxs2D]),
                    verbose=0)

                #rendering the model to an image
                shape3D = utils.getShape3D(self.mean3DShape, self.blendshapes,
                                           modelParams)
                renderedImg = self.renderer.render(shape3D)

                #blending of the rendered face with the image
                mask = np.copy(renderedImg[:, :, 0])
                renderedImg = ImageProcessing.colorTransfer(
                    frame, renderedImg, mask)

                # apply rendered image on frame
                frame = ImageProcessing.blendImages(renderedImg, frame, mask)

                # cv2.imshow('frame', frame)
                #drawing of the mesh and keypoints
                if self.drawOverlay:
                    drawPoints(frame, shape2D.T)
                    drawProjectedShape(frame,
                                       [self.mean3DShape, self.blendshapes],
                                       self.projectionModel, self.mesh,
                                       modelParams, self.lockedTranslation)

                cv2.imshow('Face recognition demo', frame)

        if self.writer is not None:
            # output_stream.write(frame)
            self.writer.write(frame)

    def draw_eye_brows(self, frame, roi, landmarks, head_pose):

        # angle_up_down, angle_head_tilt, angle_left_right = map(lambda x:x//20*20 ,map(int,self.get_head_pose_angles(frame, roi, head_pose)))
        angle_up_down, angle_head_tilt, angle_left_right = self.get_head_pose_angles(
            frame, roi, head_pose)
        angle_para = {
            'angle_up_down': angle_up_down,
            'angle_head_tilt': angle_head_tilt,
            'angle_left_right': angle_left_right
        }

        # center point for each eye
        center_r = roi.position + roi.size * landmarks.five
        center_l = roi.position + roi.size * landmarks.two

        # print('-----------------------------------------','center_r', center_r)
        # height, width, channels = img.shape

        # print(f'{angle_up_down}_{angle_head_tilt}_{angle_left_right}')
        # try:
        #     self.eye_brow_left, self.eye_brow_right = self.frame_dict[f'{angle_up_down}_{angle_head_tilt}_{angle_left_right}']
        #     print("-----hurra------")

        # except Exception as e:
        #     print('e--',e)
        #     self.eye_brow_left, self.eye_brow_right = self.eye_brow_obj.update_layout(angle=angle_para)
        #     self.frame_dict[f'{angle_up_down}_{angle_head_tilt}_{angle_left_right}'] = (self.eye_brow_left,self.eye_brow_right)
        #manual resize image of eye
        # for distance
        center_r1 = roi.size * landmarks.four
        center_r2 = roi.size * landmarks.six
        center_l1 = roi.size * landmarks.one
        center_l2 = roi.size * landmarks.three

        # eye_brow_right = cv2.resize(self.eye_brow_right,self.get_distance(center_l1,center_l2))
        # eye_brow_left = cv2.resize(self.eye_brow_left,self.get_distance(center_r1,center_r2))

        # auto resizing
        eye_brow_right = cv2.resize(
            self.eye_brow_right, (int(roi.size[1] / 4), int(roi.size[0] / 4)))
        eye_brow_left = cv2.resize(
            self.eye_brow_left, (int(roi.size[1] / 4), int(roi.size[0] / 4)))
        # rotate images of eye brow
        # eye_brow_right = self.rotateImage(eye_brow_right,self.get_angle(landmarks.three,landmarks.six),frame="right")
        # eye_brow_left = self.rotateImage(eye_brow_left,self.get_angle(landmarks.one,landmarks.three))

        eye_brow_right = self.rotateImage(eye_brow_right,
                                          -angle_head_tilt,
                                          frame="right")
        eye_brow_left = self.rotateImage(eye_brow_left, -angle_head_tilt)

        #eye_brow_left = cv2.cvtColor(eye_brow_left,cv2.COLOR_BGR2RGB)

        # height, width, channels = img.shape
        height, width, channels_f = frame.shape
        rows, cols, channels_r = eye_brow_right.shape
        rows, cols, channels_l = eye_brow_left.shape

        #eye_brow_left = cv2.resize(eye_brow_left, (width, height))
        #frame = cv2.addWeighted(frame,0,eye_brow_left,1,0)

        p2, p1 = int(center_r[0] - cols / 2), int(center_r[1] -
                                                  rows / 2)  #0, 250
        frame_eb_r = cv2.addWeighted(frame[p1:p1 + rows, p2:p2 + cols], 1,
                                     eye_brow_right, 1, 0)

        #frame[250:250+rows, 0:0+cols ] = eye_brow_right
        frame[p1:p1 + rows, p2:p2 + cols] = frame_eb_r

        p2, p1 = int(center_l[0] - cols / 2), int(center_l[1] -
                                                  rows / 2)  #0, 250
        frame_eb_r_l = cv2.addWeighted(frame[p1:p1 + rows, p2:p2 + cols], 1,
                                       eye_brow_left, 1, 0)

        #frame[250:250+rows, 0:0+cols ] = eye_brow_right
        # cv2.circle(frame, (int(center_l[0]-cols/2),int(center_l[1]-rows/3)), 2, (0, 255, 255), 2)

        frame[p1:p1 + rows, p2:p2 + cols] = frame_eb_r_l
        #print('channels_f,channels_l,channels_r',channels_f,channels_l,channels_r)
        # cv2.imshow('dsfdas',self.eye_brow_right)

    def get_head_pose_angles(self, frame, roi, head_pose):

        angle_p_fc, angle_r_fc, angle_y_fc = [
            next(iter(obj))[0] for obj in head_pose
        ]
        # for obj in head_pose:
        #     for j in obj:
        #         print(j,end='')
        # angle_up_down, angle_head_tilt, angle_left_right = angle_p_fc, angle_r_fc, angle_y_fc
        # print(angle_p_fc, angle_r_fc, angle_y_fc)
        return angle_p_fc, angle_r_fc, angle_y_fc

    def draw_detections(self, frame, detections):
        # print("******"*50)
        for roi, landmarks, head_pose, identity in zip(*detections):
            # self.draw_detection_roi(frame, roi, identity)
            # self.draw_detection_keypoints(frame, roi, landmarks, head_pose)
            try:
                self.draw_eye_brows(frame, roi, landmarks, head_pose)
                self.draw_face_mesh(frame, roi, landmarks, head_pose)
            except Exception as ex:
                print(ex)
            #self.draw_detection_head_pose(frame, roi, head_pose)

    def display_interactive_window(self, frame):
        #frame = cv2.flip(frame,1)
        color = (255, 255, 255)
        font = cv2.FONT_HERSHEY_SIMPLEX
        text_scale = 0.5
        text = "Press '%s' key to exit" % (self.BREAK_KEY_LABELS)
        thickness = 2
        text_size = cv2.getTextSize(text, font, text_scale, thickness)
        origin = np.array([frame.shape[-2] - text_size[0][0] - 10, 10])
        line_height = np.array([0, text_size[0][1]]) * 1.5
        cv2.putText(frame, text, tuple(origin.astype(int)), font, text_scale,
                    color, thickness)

        # # height, width, channels = img.shape
        # height, width, channels = frame.shape

        # eye_brow_right = cv2.imread(r"D:\.openvino\fd\Eyebrows\e1 (6).png")
        # eye_brow_left = cv2.imread(r"D:\.openvino\fd\Eyebrows\eye_brow_left.png")
        # eye_brow_left = cv2.cvtColor(eye_brow_left,cv2.COLOR_BGR2RGB)

        # # height, width, channels = img.shape
        # height, width, channels = frame.shape

        # #eye_brow_left = cv2.resize(eye_brow_left, (width, height))
        # #frame = cv2.addWeighted(frame,0,eye_brow_left,1,0)

        # rows,cols,channels = eye_brow_right.shape

        # eye_brow_right=cv2.addWeighted(frame[250:250+rows, 0:0+cols],1,eye_brow_right,1,0)

        # frame[250:250+rows, 0:0+cols ] = eye_brow_right

        # cv2.imshow('Face recognition demo', frame)

    def should_stop_display(self):
        # key = cv2.waitKey(self.frame_timeout) & 0xFF
        # return key in self.BREAK_KEYS

        key = cv2.waitKey(1)

        if key == 27 or key == ord('q'):
            return True
            # break
        if key == ord('l'):
            self.drawOverlay = not self.drawOverlay
            return False

        if key == ord('r'):
            if self.writer is None:
                print("Starting video writer")
                # self.writer = cv2.VideoWriter("../out.avi", cv2.CV_FOURCC('X', 'V', 'I', 'D'), 25, (frame.shape[1], frame.shape[0]))
                self.writer = cv2.VideoWriter("../out.avi",
                                              cv2.VideoWriter.fourcc(*'MJPG'),
                                              25,
                                              (frame.shape[1], frame.shape[0]))

                if self.writer.isOpened():
                    print("Writer succesfully opened")
                else:
                    self.writer = None
                    print("Writer opening failed")
            else:
                print("Stopping video writer")
                self.writer.release()
                self.writer = None

    def process(self, input_stream, output_stream):
        frame_rate = 10
        prev = 0
        self.input_stream = input_stream
        self.output_stream = output_stream

        # cameraImg = input_stream.read()[1]

        while input_stream.isOpened():

            time_elapsed = time.time() - prev

            has_frame, frame = input_stream.read()
            # print ("##"*100)
            # to be removed
            self.shapes2D = utils.getFaceKeypoints(
                frame, self.detector, self.predictor,
                self.maxImageSizeForDetection)

            # if time_elapsed > 1./frame_rate:
            #     prev = time.time()
            # else:
            #     continue

            if not has_frame:
                break
            # frame = self.fliped(frame) # manually added by SG to make mirror like effect

            # if self.input_crop is not None:
            #     frame = Visualizer.center_crop(frame, self.input_crop)

            detections = self.frame_processor.process(frame)
            # print("detections------------", detections)

            self.draw_detections(frame, detections)
            # self.draw_status(frame, detections)

            if output_stream:
                output_stream.write(frame)
            if self.display:
                self.display_interactive_window(frame)
                if self.should_stop_display():
                    break

            self.update_fps()
            self.frame_num += 1

    def run(self, args):

        input_stream = Visualizer.open_input_stream(args.input)

        if input_stream is None or not input_stream.isOpened():
            log.error("Cannot open input stream: %s" % args.input)
        fps = input_stream.get(cv2.CAP_PROP_FPS)

        frame_size = (int(input_stream.get(cv2.CAP_PROP_FRAME_WIDTH)),
                      int(input_stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))

        self.frame_count = int(input_stream.get(cv2.CAP_PROP_FRAME_COUNT))
        log.info("Input stream info: %d x %d @ %.2f FPS" % \
            (frame_size[0], frame_size[1], fps))
        output_stream = Visualizer.open_output_stream(args.output, fps,
                                                      frame_size)

        cameraImg = input_stream.read()[1]
        self.textureCoords = utils.getFaceTextureCoords(
            self.textureImg, self.mean3DShape, self.blendshapes, self.idxs2D,
            self.idxs3D, self.detector, self.predictor)
        self.renderer = FaceRendering.FaceRenderer(cameraImg, self.textureImg,
                                                   self.textureCoords,
                                                   self.mesh)

        self.process(input_stream, output_stream)

        # Release resources
        if output_stream:
            output_stream.release()
        if input_stream:
            input_stream.release()

        cv2.destroyAllWindows()

    @staticmethod
    def open_input_stream(path):
        log.info("Reading input data from '%s'" % (path))
        stream = path
        try:
            stream = int(path)
        except ValueError:
            pass
        return cv2.VideoCapture(stream)

    @staticmethod
    def open_output_stream(path, fps, frame_size):

        print("path, fps, frame_size---", path, fps, frame_size)
        output_stream = None
        if path != "":
            # pass
            if not path.endswith('.avi'):
                log.warning("Output file extension is not 'avi'. " \
                        "Some issues with output can occur, check logs.")
            log.info("Writing output to '%s'" % (path))
            output_stream = cv2.VideoWriter(path,
                                            cv2.VideoWriter.fourcc(*'MJPG'),
                                            fps, frame_size)
        return output_stream
예제 #11
0
def main():
    # fourcc = cv2.VideoWriter_fourcc(*'XVID')
    fourcc = cv2.VideoWriter_fourcc(*'MP4V')
    writer = None

    if writer is None:
        print("Starting video writer")
        writer = cv2.VideoWriter("./out.mp4", fourcc, 30.0, (CROP_SIZE*2, CROP_SIZE))

        if writer.isOpened():
            print("Writer succesfully opened")
        else:
            writer = None
            print("Writer opening failed")
    else:
        print("Stopping video writer")
        writer.release()
        writer = None

    # TensorFlow
    graph = load_graph(args.frozen_model_file)
    image_tensor = graph.get_tensor_by_name('image_tensor:0')
    output_tensor = graph.get_tensor_by_name('generate_output/output:0')
    sess = tf.Session(graph=graph)

    # OpenCV
    # cap = cv2.VideoCapture(args.video_source)
    cap = cv2.VideoCapture(args.video_dir)
    fps = video.FPS().start()

    mean3DShape, blendshapes, mesh, idxs3D, idxs2D = utils.load3DFaceModel("candide.npz")
    projectionModel = models.OrthographicProjectionBlendshapes(blendshapes.shape[0])

    while True:
        ret, frame = cap.read()
        if frame is None:
            break

        # resize image and detect face
        frame_resize = cv2.resize(frame, None, fx=1 / DOWNSAMPLE_RATIO, fy=1 / DOWNSAMPLE_RATIO)
        gray = cv2.cvtColor(frame_resize, cv2.COLOR_BGR2GRAY)

        #get frame face label
        # faces = detector(gray, 1)
        black_image = np.zeros(frame.shape, np.uint8)

        # for face in faces:
        #     detected_landmarks = predictor(gray, face).parts()
        #     landmarks = [[p.x * DOWNSAMPLE_RATIO, p.y * DOWNSAMPLE_RATIO] for p in detected_landmarks]
        #
        #     jaw = reshape_for_polyline(landmarks[0:17])
        #     left_eyebrow = reshape_for_polyline(landmarks[22:27])
        #     right_eyebrow = reshape_for_polyline(landmarks[17:22])
        #     nose_bridge = reshape_for_polyline(landmarks[27:31])
        #     lower_nose = reshape_for_polyline(landmarks[30:35])
        #     left_eye = reshape_for_polyline(landmarks[42:48])
        #     right_eye = reshape_for_polyline(landmarks[36:42])
        #     outer_lip = reshape_for_polyline(landmarks[48:60])
        #     inner_lip = reshape_for_polyline(landmarks[60:68])
        #
        #     color = (255, 255, 255)
        #     thickness = 3
        #
        #     cv2.polylines(black_image, [jaw], False, color, thickness)
        #     cv2.polylines(black_image, [left_eyebrow], False, color, thickness)
        #     cv2.polylines(black_image, [right_eyebrow], False, color, thickness)
        #     cv2.polylines(black_image, [nose_bridge], False, color, thickness)
        #     cv2.polylines(black_image, [lower_nose], True, color, thickness)
        #     cv2.polylines(black_image, [left_eye], True, color, thickness)
        #     cv2.polylines(black_image, [right_eye], True, color, thickness)
        #     cv2.polylines(black_image, [outer_lip], True, color, thickness)
        #     cv2.polylines(black_image, [inner_lip], True, color, thickness)

        shapes2D = getFaceKeypoints(frame, detector, predictor)
        if shapes2D is None:
            continue
        # 3D model parameter initialization
        modelParams = projectionModel.getInitialParameters(mean3DShape[:, idxs3D], shapes2D[0][:, idxs2D])

        # 3D model parameter optimization
        modelParams = NonLinearLeastSquares.GaussNewton(modelParams, projectionModel.residual,
                                                        projectionModel.jacobian, (
                                                            [mean3DShape[:, idxs3D], blendshapes[:, :, idxs3D]],
                                                            shapes2D[0][:, idxs2D]), verbose=0)

        drawProjectedShape(black_image, [mean3DShape, blendshapes], projectionModel, mesh, modelParams,
                           lockedTranslation)

        # generate prediction
        combined_image = np.concatenate([resize(black_image), resize(frame_resize)], axis=1)
        image_rgb = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)  # OpenCV uses BGR instead of RGB
        generated_image = sess.run(output_tensor, feed_dict={image_tensor: image_rgb})
        image_bgr = cv2.cvtColor(np.squeeze(generated_image), cv2.COLOR_RGB2BGR)
        image_normal = np.concatenate([resize(frame_resize), image_bgr], axis=1)
        image_landmark = np.concatenate([resize(black_image), image_bgr], axis=1)

        if args.display_landmark == 0:
            cv2.imshow('frame', image_normal)
        else:
            cv2.imshow('frame', image_landmark)

        if writer is not None:
            writer.write(image_normal)

        fps.update()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    writer.release()
    fps.stop()
    print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed()))
    print('[INFO] approx. FPS: {:.2f}'.format(fps.fps()))

    sess.close()
    cap.release()
    cv2.destroyAllWindows()