def classify(inputfile='slpdb.mat', epoch_length=30, make_plot=True, save=True, outputfile='classify.txt'): # Load datas dataset = loadData(inputfile) ECG = groupByEpoch(dataset['ECG'], 250, epoch_length) Resp_in, Resp_out = edr.main(dataset) # Feature dictionary construction d_test = dictionaryInitialization() d_test = dico_construction(ECG, Resp_in, Resp_out, d_test) Xarr_norm = createNormalizedDataframe(d_test) # Predecition model = joblib.load('model.pkl') pred_res = list() for j in range(0, len(ECG)): l = str(model.predict(Xarr_norm[j])[0]) pred_res.append(l) if make_plot: # Plot result plot(pred_res, dataset['labels'], epoch_length) if save: # Write prediction into text file savePredictions(pred_res, outputfile)
import numpy as np from sklearn.cross_validation import train_test_split from data import loadData from featureConstruction import dictionaryInitialization,dico_construction from models import listModels,createNormalizedDataframe,savePredictions mat_file = 'data_challenge.mat' # Load datas dataset = loadData(mat_file) # Train dictionary construction d_train = dictionaryInitialization() d_train = dico_construction(dataset['X_train'],d_train) labels = np.array(dataset['y_train']) Xarr_norm = createNormalizedDataframe(d_train) # Test our models X_train_train, X_train_test, y_train_train, y_train_test = train_test_split(Xarr_norm,labels,test_size=0.2,random_state=42) X_train_train = np.nan_to_num(X_train_train) X_train_test = np.nan_to_num(X_train_test) # Scores models = listModels() for m in models: print m.get_params() m.fit(X_train_train,y_train_train) print m.score(X_train_test,y_train_test) # Real training model
import numpy as np from sklearn.cross_validation import train_test_split from data import loadData from featureConstruction import dictionaryInitialization, dico_construction from models import listModels, createNormalizedDataframe, savePredictions mat_file = 'data_challenge.mat' # Load datas dataset = loadData(mat_file) # Train dictionary construction d_train = dictionaryInitialization() d_train = dico_construction(dataset['X_train'], d_train) labels = np.array(dataset['y_train']) Xarr_norm = createNormalizedDataframe(d_train) # Test our models X_train_train, X_train_test, y_train_train, y_train_test = train_test_split( Xarr_norm, labels, test_size=0.2, random_state=42) X_train_train = np.nan_to_num(X_train_train) X_train_test = np.nan_to_num(X_train_test) # Scores models = listModels() for m in models: print m.get_params() m.fit(X_train_train, y_train_train) print m.score(X_train_test, y_train_test)