예제 #1
0
def get_model_and_optimizer(model_class, model_path, cfg):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    ngpu = 1 if torch.cuda.is_available() else 0
    network = model_class(ngpu, cfg).to(device)
    if cfg["RMSprop"]:
        optimizer = optim.RMSprop(network.parameters(), lr=cfg["lr"])
    else:
        optimizer = optim.Adam(network.parameters(),
                               lr=cfg["lr"],
                               betas=(cfg["beta1"], 0.999))

    initialise(network, model_path)
    print(network)
    return network, optimizer
예제 #2
0
def index():
    """index view showing the user their board(s)"""
    models.User.update(UserType=99).where(
        models.User.UserName == 'admin').execute()
    if current_user.get_usertype() == 99:
        boards = models.Board.select()
        return render_template('index.html',
                               boards=boards,
                               admin=True,
                               models=models)
    boards = models.User.get_boards(g.user.id)
    return render_template('index.html', boards=boards)


if __name__ == 'app':
    models.initialise()
    try:
        # creates a user for testing
        models.User.create_user(username="******",
                                email="*****@*****.**",
                                password=os.environ.get('ADMIN_PASS'),
                                usertype=99)
        print('created admin user')
    except ValueError:
        pass

    # different host for web server
    if os.uname().nodename == 'Georges-MacBook-Pro-2.local':
        app.run(debug=DEBUG,
                port=int(os.environ.get('PORT', 5000)),
                use_reloader=True,
예제 #3
0
파일: listener.py 프로젝트: wrt2dc/drastic
    mqtt_client.disconnect()

    logger.info('Dereticulating splines... Done!')

    sys.exit(0)


if __name__ == '__main__':
    arguments = docopt(__doc__, version='Listener v1.0')

    logger = log.init_log('listener')

    signal.signal(signal.SIGTERM, shutdown)

    cfg = get_config(None)
    initialise(cfg.get('KEYSPACE', 'drastic'),
               hosts=cfg.get('CASSANDRA_HOSTS', ('127.0.0.1', )))

    if arguments['--verbose']:
        logger.setLevel(logging.DEBUG)
    elif arguments['--quiet']:
        logger.setLevel(logging.WARNING)
    else:
        logger.setLevel(logging.INFO)

    script_directory_topic = '+/resource/{0}/#'.format(
        arguments['<script_collection>'])
    script_directory_topic = '/'.join(
        filter(None, script_directory_topic.split('/')))
    script_directory = arguments['<script_directory>']
    scan_script_collection(arguments['<script_collection>'])
예제 #4
0
    logger.info('Dereticulating splines... Done!')

    sys.exit(0)


if __name__ == '__main__':
    arguments = docopt(__doc__, version='Listener v1.0')

    logger = log.init_log('listener')

    signal.signal(signal.SIGTERM, shutdown)

    cfg = get_config(None)
    initialise(keyspace=cfg.get('KEYSPACE', 'indigo'),
               hosts=cfg.get('CASSANDRA_HOSTS', ('127.0.0.1', )),
               repl_factor=cfg.get('REPLICATION_FACTOR', 1))

    if arguments['--verbose']:
        logger.setLevel(logging.DEBUG)
    elif arguments['--quiet']:
        logger.setLevel(logging.WARNING)
    else:
        logger.setLevel(logging.INFO)

    script_directory_topic = '+/resource/{0}/#'.format(
        arguments['<script_collection>'])
    script_directory_topic = '/'.join(
        filter(None, script_directory_topic.split('/')))
    script_directory = arguments['<script_directory>']
    scan_script_collection(arguments['<script_collection>'])
_test_dir = CONFIG['testing directory']

_pre_img_size = CONFIG['pre image size']
_post_img_size = CONFIG['post image size']

_lr = CONFIG['learning rate']
_output = CONFIG['output']

_network_name = CONFIG['network name']

cam = camera.Feed()
draw = camera.Draw()

model = models.initialise(model_name=MODEL_NAME,
                          network_name=_network_name,
                          image_size=_post_img_size,
                          learning_rate=_lr,
                          output=_output)


def predict_and_parse(image_a, image_b):

    image_a = cam.resize(image_a, (200, 200))
    image_b = cam.resize(image_b, (200, 200))

    images = np.concatenate((image_a, image_b), axis=1)
    cam.out_one('ims1', images)

    test_img = cam.resize(images, _post_img_size)
    cam.out_one('ims2', test_img)