예제 #1
0
파일: train.py 프로젝트: bjstarosta/ecci_ml
def list_models(ctx, **kwargs):
    """List available trainable models."""
    lst = models.list_models(True)
    for m in lst:
        id, doc = m
        doc = textwrap.indent(doc, "       ")
        print("  •  {0}:\n{1}".format(id, doc))
예제 #2
0
    def setup_pilots(self, rover):
        manual_pilots = []
        try: # intenta encontrar un mando RC y lo define en los log.
            f710 = F710() # 
            manual_pilots.append(f710)
            logging.info("Loaded F710 Gamepad module")
        except Exception as e:
            f710 = None
        if self.board_type is 'navio':
            #Cant get RC for Navio to work yet
            pass
        elif self.board_type is 'navio2': # si es la placa navio2:
            #manual_pilots.append(RC()) ; este cacho sobreescribe
            logging.info("Non loaded RC module")
        rover.manual_pilots = manual_pilots

        # Si no detecta ninguna configuracion manual para el control, pasa a modo automatico.

        auto_pilots = []
        model_paths = list_models()
        for model_path, model_name in model_paths:
            logging.info("Loading model " + model_name)
            keras = KerasCategorical(model_path, name=model_name)
            auto_pilots.append(keras)
        rover.auto_pilots = auto_pilots
예제 #3
0
 def setup_pilots(self, rover):
     pilots = []
     try:
         f710 = F710()
         pilots.append(f710)
     except Exception as e:
         f710 = None
         logging.info("Unable to load F710 Gamepad")
     try:
         rc = RC()
         pilots.append(rc)
     except Exception as e:
         rc = None
         logging.info("Unable to load RC")
     model_paths = list_models()
     for model_path, model_name in model_paths:
         keras = KerasCategorical(model_path, name=model_name)
         logging.info("Loading model " + model_name)
         keras.load()
         if f710:
             pilots.append(MixedF710(keras, f710))
         if rc:
             pilots.append(MixedRC(keras, rc))
     rover.pilots = pilots
     rover.set_pilot(0)
예제 #4
0
    def setup_pilots(self, rover):
        manual_pilots = []
        try:
            f710 = F710()
            manual_pilots.append(f710)
            logging.info("Loaded F710 Gamepad module")
        except Exception as e:
            f710 = None
        if self.board_type is 'navio':
            #Cant get RC for Navio to work yet
            pass
        elif self.board_type is 'navio2':
            manual_pilots.append(RC())
            logging.info("Loaded RC module")
        rover.manual_pilots = manual_pilots

        auto_pilots = []
        model_paths = list_models()
        for model_path, model_name in model_paths:
            logging.info("Loading model " + model_name)
            keras = KerasCategorical(model_path, name=model_name)
            auto_pilots.append(keras)
        rover.auto_pilots = auto_pilots
예제 #5
0
파일: composers.py 프로젝트: muramura/burro
 def setup_pilots(self, rover):
     pilots = []
     try:
         f710 = F710()
         pilots.append(f710)
         logging.info("Loaded F710 Gamepad module")
     except Exception as e:
         f710 = None
     if self.board_type is 'navio':
         rc = RC()
         pilots.append(rc)
         logging.info("Loaded RC module")
     else:
         rc = None
     model_paths = list_models()
     for model_path, model_name in model_paths:
         logging.info("Loading model " + model_name)
         keras = KerasCategorical(model_path, name=model_name)
         if f710:
             pilots.append(MixedF710(keras, f710))
         if rc:
             pilots.append(MixedRC(keras, rc))
     rover.pilots = pilots
     rover.set_pilot(0)
예제 #6
0
 def test_list_models(self):
     file = sys.modules[__name__].__file__
     path = os.path.dirname(os.path.realpath(file))
     f = open(os.path.join(path, "../models/unit_test.h5"), "a")
     models_list = list_models()
     self.assertTrue(models_list)
예제 #7
0
import logging
import models

from sys import path
path.insert(1, './rest_gae')

from rest_gae import *
from rest_gae.users import UserRESTHandler

config = {}
config['webapp2_extras.sessions'] = {
    'secret_key': 'my-super-secret-key',
}

model_handlers = []
model_list = models.list_models()

# automatically create a handler for every model listed in models
for model_name in model_list:
    model_handlers.append(RESTHandler(
        '/api/' + model_name.lower(),
        getattr(models, model_name),
        permissions={
            'GET': PERMISSION_ANYONE,
            'POST': PERMISSION_LOGGED_IN_USER,
            'PUT': PERMISSION_OWNER_USER,
            'DELETE': PERMISSION_ADMIN
        },

        # Will be called for every PUT, right before the model is saved
        put_callback=lambda model, data: model
예제 #8
0
from absl import app
from absl import flags

import models
import methods
import file_utils
import load_datasets

from datasets import datasets
from metrics import Metrics
from checkpoints import CheckpointManager
from gpu_memory import set_gpu_memory

print (methods.list_methods())
print (models.list_models())
print (datasets.list_datasets())
FLAGS = flags.FLAGS

flags.DEFINE_string("modeldir", "example-models", "Directory for saving model files")
flags.DEFINE_string("logdir", "example-logs", "Directory for saving log files")
flags.DEFINE_enum("method", "yndaws", methods.list_methods(), "What method of domain adaptation to perform (or none)")
flags.DEFINE_enum("model", "ynfcn", models.list_models(), "What model to use (note: ignored for vrada/rdann methods)")
flags.DEFINE_enum("dataset", "ucihar", datasets.list_datasets(), "What dataset to use (e.g. \"ucihar\")")
flags.DEFINE_string("sources", "14", "Which source domains to use (e.g. \"1,2,3\")")
flags.DEFINE_string("target", "19", "What target domain to use (e.g. \"4\", can be blank for no target)")
flags.DEFINE_string("uid", "0", "A unique ID saved in the log/model folder names to avoid conflicts")
flags.DEFINE_integer("ensemble", 1, "Number of models in the ensemble, 1 = no ensemble")
flags.DEFINE_integer("steps", 30000, "Number of training steps to run")
flags.DEFINE_float("gpumem", 2000, "GPU memory to let TensorFlow use, in MiB (0 for all)")
flags.DEFINE_integer("model_steps", 0, "Save the model every so many steps (0 for only when log_val_steps)")
예제 #9
0
from absl import app
from absl import flags

import models
import methods
import file_utils
import load_datasets

from datasets import datasets
from metrics import Metrics
from checkpoints import CheckpointManager
from gpu_memory import set_gpu_memory

print(methods.list_methods())
print(models.list_models())
print(datasets.list_datasets())
FLAGS = flags.FLAGS

flags.DEFINE_string("modeldir", "example-models",
                    "Directory for saving model files")
flags.DEFINE_string("logdir", "example-logs", "Directory for saving log files")
flags.DEFINE_enum("method", "yndaws", methods.list_methods(),
                  "What method of domain adaptation to perform (or none)")
flags.DEFINE_enum("model", "ynfcn", models.list_models(),
                  "What model to use (note: ignored for vrada/rdann methods)")
flags.DEFINE_enum("dataset", "ucihar", datasets.list_datasets(),
                  "What dataset to use (e.g. \"ucihar\")")
flags.DEFINE_string("sources", "14",
                    "Which source domains to use (e.g. \"1,2,3\")")
flags.DEFINE_string(
예제 #10
0
        path = Path(self.writer.file_writer.get_logdir())
        path /= "checkpoints"
        path.mkdir(parents=True, exist_ok=True)
        self.model.save(path, step)

    def close(self):
        path = Path(self.writer.file_writer.get_logdir())
        path /= "records.json"
        self.writer.export_scalars_to_json(path)
        self.writer.close()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', choices=models.list_models(),
                        help='Model to use for training')
    parser.add_argument('--n-epochs', type=int, default=argparse.SUPPRESS,
                        help='')
    parser.add_argument('--save-interval', type=int, default=argparse.SUPPRESS,
                        help='')
    parser.add_argument('--val-interval', type=int, default=argparse.SUPPRESS,
                        help='')
    parser.add_argument('--batch-size', type=int, default=argparse.SUPPRESS,
                        help='')
    parser.add_argument('--data-size', type=int, default=argparse.SUPPRESS,
                        help='')
    parser.add_argument('--lr', type=float, default=argparse.SUPPRESS,
                        help='')
    parser.add_argument('--checkpoint', type=str, default=argparse.SUPPRESS,
                        help='')