print("===================================ConvMF Option Setting===================================") print("\taux path - %s" % aux_path) print("\tdata path - %s" % data_path) print("\tresult path - %s" % res_dir) print("\tpretrained w2v data path - %s" % pretrain_w2v) print("\tdimension: %d\n\tlambda_u: %.4f\n\tlambda_v: %.4f\n\tmax_iter: %d\n\tnum_kernel_per_ws: %d" \ % (dimension, lambda_u, lambda_v, max_iter, num_kernel_per_ws)) print("===========================================================================================") R, D_all = data_factory.load(aux_path) CNN_X = D_all['X_sequence'] vocab_size = len(D_all['X_vocab']) + 1 from models import ConvMF if pretrain_w2v is None: init_W = None else: init_W = data_factory.read_pretrained_word2vec( pretrain_w2v, D_all['X_vocab'], emb_dim) train_user = data_factory.read_rating(data_path + '/train_user.dat') train_item = data_factory.read_rating(data_path + '/train_item.dat') valid_user = data_factory.read_rating(data_path + '/valid_user.dat') test_user = data_factory.read_rating(data_path + '/test_user.dat') ConvMF(max_iter=max_iter, res_dir=res_dir, lambda_u=lambda_u, lambda_v=lambda_v, dimension=dimension, vocab_size=vocab_size, init_W=init_W, give_item_weight=give_item_weight, CNN_X=CNN_X, emb_dim=emb_dim, num_kernel_per_ws=num_kernel_per_ws, train_user=train_user, train_item=train_item, valid_user=valid_user, test_user=test_user, R=R)
valid_user=valid_user, test_user=test_user, R=R, attributes_X=features_matrix, cae_output_dim=att_dim, use_transfer_block=use_transfer_block) elif content_mode == 'cnn': ConvMF(max_iter=max_iter, res_dir=fold_res_dir, state_log_dir=fold_res_dir, lambda_u=lambda_u, lambda_v=lambda_v, dimension=dimension, vocab_size=vocab_size, init_W=init_W, max_len=max_length, give_item_weight=give_item_weight, CNN_X=CNN_X, emb_dim=emb_dim, num_kernel_per_ws=num_kernel_per_ws, train_user=train_user, train_item=train_item, valid_user=valid_user, test_user=test_user, R=R) elif content_mode == 'cae': # attributes dimension must be euall to u, and v vectors dimension CAEMF(max_iter=max_iter, res_dir=fold_res_dir, state_log_dir=fold_res_dir, lambda_u=lambda_u, lambda_v=lambda_v,