#%% x = load_image_data() #%% x = x.unbatch() x = x.batch(batch_size=10) shuffled_data = x.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE) test = shuffled_data.take(TEST_SIZE).repeat() train = shuffled_data.skip(TEST_SIZE).repeat() #%% model = DnCNN(depth=17) model.compile(optimizer=keras.optimizers.Adam(), loss=dcnn_loss, metrics=[psnr]) now = datetime.now() tensorboard_callback = keras.callbacks.TensorBoard( log_dir='logs\log_from_{}'.format(now.strftime("%Y-%m-%d_at_%H-%M-%S")), histogram_freq=1) model.fit(x=train, steps_per_epoch=1000, validation_data=test, epochs=5, validation_steps=50, callbacks=[tensorboard_callback]) model.summary()
# nomal=True, # fill_mode='constant') # generator = train_datagen.flow_from_directory(file_path=train_file_path, # data_dir=data_dir, data_suffix=data_suffix, # label_dir=label_dir, label_suffix=label_suffix, # target_size=target_shape, color_mode='grayscale', # batch_size=batch_size, shuffle=True, # loss_shape=None) scheduler = LearningRateScheduler(lr_scheduler) callbacks = [scheduler] # ################### checkpoint saver####################### checkpoint = ModelCheckpoint(filepath=os.path.join(save_path, 'checkpoint_weights.h5'), save_weights_only=True) # .{epoch:d} callbacks.append(checkpoint) # model = srcnn(input_shape=input_shape, kernel_size=[3, 3]) model = DnCNN(input_shape=input_shape) # model.load_weights('unet_optics_l2.h5') model.compile(loss=mean_squared_error, optimizer='adadelta') model.summary() history = model.fit(input_data, input_label, batch_size=batch_size, nb_epoch=epochs, callbacks=callbacks, verbose=1) model.save_weights('DnCNN_l2_mnist_combinenoise200_noise.h5')