import json from algos import OptAlg from models import LPMC_DC data_folder = '../../../data/' if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train LPMC_DC_L with LS-ABS and hybrid-inv") model = LPMC_DC(data_folder, file='12_13_14.csv') ioa = OptAlg(alg_type='LS-ABS', direction='hybrid-inv') res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): tmp = model.optimize( ioa, **{ 'verbose': False, 'max_epochs': 1000, 'batch': 1000 }) res['time'].append(tmp['opti_time'])
import json from algos import OptAlg from models import LPMC_DC data_folder = '../../../data/' if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train LPMC_DC_M with LS-ABS and grad") model = LPMC_DC(data_folder) ioa = OptAlg(alg_type='LS-ABS', direction='grad') res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): tmp = model.optimize( ioa, **{ 'verbose': False, 'max_epochs': 1000, 'batch': 1000 }) res['time'].append(tmp['opti_time'])
from algos import OptAlg from models import LPMC_DC data_folder = '../../../data/' if __name__ == "__main__": parameters = {''} if not os.path.exists('./results'): os.makedirs('./results') print("Testing parameters for LPMC_RR_L") model = LPMC_DC(data_folder, file='12_13_14.csv') ioa = OptAlg(alg_type='LS-ABS', direction='hybrid-inv') base_param = {'perc_hybrid': 30, 'thresh_upd': 1, 'count_upd': 2, 'window': 10, 'factor_upd': 2} main_params = {'verbose': False, 'max_epochs': 1000, 'batch': 1000} main_params.update(base_param) draws = 10 res = {} print("Start with perc_hybrid") param_ph = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]
import os import time import json from models import LPMC_DC data_folder = '../../../data/' if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train LPMC_DC with current Biogeme optimization algorithm.") model = LPMC_DC(data_folder, file='12.csv') res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): results = model.biogeme.estimate() res['time'].append(model.biogeme.optimizationTime.total_seconds()) res['LL'].append(results.data.logLike) res['epochs'].append(model.biogeme.numberOfIterations) with open('results/biogeme_bfgs.json', 'w') as outfile: json.dump(res, outfile) # Delete pickle files
import os import time import json from models import LPMC_DC data_folder = '../../../data/' if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train LPMC_DC with current Biogeme optimization algorithm.") model = LPMC_DC(data_folder, file='12_13_14.csv') res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): results = model.biogeme.estimate() res['time'].append(model.biogeme.optimizationTime.total_seconds()) res['LL'].append(results.data.logLike) res['epochs'].append(model.biogeme.numberOfIterations) with open('results/biogeme_bfgs.json', 'w') as outfile: json.dump(res, outfile) # Delete pickle files
import os import time import json from models import LPMC_DC data_folder = '../../../data/' if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train LPMC_DC with current Biogeme optimization algorithm.") model = LPMC_DC(data_folder) res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): results = model.biogeme.estimate() res['time'].append(model.biogeme.optimizationTime.total_seconds()) res['LL'].append(results.data.logLike) res['epochs'].append(model.biogeme.numberOfIterations) with open('results/biogeme_bfgs.json', 'w') as outfile: json.dump(res, outfile) # Delete pickle files