#FOCAL LOSS AND DICE METRIC #Focal loss helps focus more on tough to segment classes. from focal_loss import BinaryFocalLoss ############################################################################### #Try various models: Unet, Attention_UNet, and Attention_ResUnet #Rename original python file from 224_225_226_models.py to models.py from models import Attention_ResUNet, UNet, Attention_UNet, dice_coef, dice_coef_loss, jacard_coef ''' UNet ''' unet_model = UNet(input_shape) unet_model.compile(optimizer=Adam(lr=1e-2), loss=BinaryFocalLoss(gamma=2), metrics=['accuracy', jacard_coef]) print(unet_model.summary()) start1 = datetime.now() unet_history = unet_model.fit(X_train, y_train, verbose=1, batch_size=batch_size, validation_data=(X_test, y_test), shuffle=False, epochs=50) stop1 = datetime.now() #Execution time of the model
def main(): # Gets currect directory path cdir = os.getcwd() # Parameters epochs = 100 batch_size = 1 depth = 3 loss_label = 'GDL' loss_func = generalized_dice_loss learning_rate = 1e-4 df = pd.DataFrame(columns=['dataset', 'size', 'time elapsed during training', 'epochs', 'val_loss', 'test_loss', 'test_acc', 'test_precision', 'test_recall']) datasets = ["ds0", "ds1", "ds2", "ds3"] datasets_label = ["EvaLady", "AosugiruHaru", "JijiBabaFight", "MariaSamaNihaNaisyo"] for d, ds in enumerate(datasets): # Gets all files .jpg inputs_train = glob.glob( str(cdir)+"/../../datasets/D1_"+ds+"/input/*.jpg") # Gets all files .png targets_train = glob.glob( str(cdir)+"/../../datasets/D1_"+ds+"/target/*.png") inputs_val = glob.glob( str(cdir)+"/../../datasets/TT_"+ds+"/input/*.jpg") # Gets all files .png targets_val = glob.glob( str(cdir)+"/../../datasets/TT_"+ds+"/target/*.png") # Sort paths inputs_train.sort() targets_train.sort() inputs_val.sort() targets_val.sort() opt = Adam(lr=learning_rate) # Fixes a initial seed for randomness np.random.seed(RANDOM_SEED) set_random_seed(RANDOM_SEED) X_train = [] Y_train = [] X_val = [] Y_val = [] # Iterates through files and extract the patches for training, validation and testing for i, _ in enumerate(inputs_train): x = plt.imread(inputs_train[i]) if len(x.shape) == 3: x = x[:, :, 0] X_train.append(fix_size(x, depth)) Y_train.append(fix_size(plt.imread(targets_train[i]), depth)) for i, _ in enumerate(inputs_val): x = plt.imread(inputs_val[i]) if len(x.shape) == 3: x = x[:, :, 0] X_val.append(fix_size(x, depth)) Y_val.append(fix_size(plt.imread(targets_val[i]), depth)) X_train = img_to_normal(np.array(X_train)[..., np.newaxis]) Y_train = img_to_ohe(np.array(Y_train)) X_val = img_to_normal(np.array(X_val)[..., np.newaxis]) Y_val = img_to_ohe(np.array(Y_val)) # Shuffles both the inputs and targets set indexes = list(range(0, len(inputs_val))) np.random.shuffle(indexes) X_val = X_val[indexes] Y_val = Y_val[indexes] X_val1 = X_val[:5] Y_val1 = Y_val[:5] X_val2 = X_val[5:10] Y_val2 = Y_val[5:10] fig, ax = plt.subplots(1, 1, figsize=(15, 10)) plt.subplots_adjust(hspace=0.4) for s in range(1, 11): mc = ModelCheckpoint( "unet_{0}_{1}.hdf5".format(ds, s), monitor='val_loss', verbose=1, save_best_only=True, mode='min') #es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5) # Initializes model model = UNet(depth) model.compile(loss=loss_func, optimizer=opt) # Trains model start = time.time() history = model.fit(X_train[:s], Y_train[:s], validation_data=( X_val1, Y_val1), epochs=epochs, batch_size=batch_size, verbose=2, callbacks=[mc]) end = time.time() # Plots some performance graphs loss = history.history['loss'] val_loss = history.history['val_loss'] np.save('history_{0}_{1}.npy'.format(ds, s), history.history) epochs_range = list(range(0, len(loss))) ''' Loss ''' ax.plot(epochs_range[1:], val_loss[1:], label='Validation loss with {0} examples'.format(s)) ax.xaxis.set_ticks(np.arange(0, 101, 10)) ax.yaxis.set_ticks(np.arange(0, 1, 0.1)) ax.set_xlabel('Epochs') ax.set_ylabel('Loss') ax.set_title('Learning curve - {0}'.format(datasets_label[d])) ax.legend() fig.savefig('learning_curve_{0}.png'.format(ds)) model = UNet(depth) model.load_weights("unet_{0}_{1}.hdf5".format(ds, s)) Y_pred = model.predict(X_val2) test_loss = loss_func(K.constant( Y_val2), K.constant(Y_pred)).numpy() Y_pred = ohe_to_img(Y_pred) Y_val2 = ohe_to_img(Y_val2) metrics = calc_metrics(Y_val2, Y_pred) Y_val2 = img_to_ohe(Y_val2) df2 = pd.DataFrame(data={'dataset': [datasets_label[d]], 'size': [s], 'time elapsed during training': [end-start], 'epochs': [len(loss)], 'val_loss': [np.amin(val_loss)], 'test_loss': [test_loss], 'test_acc': [metrics['accuracy']], 'test_precision': [metrics['precision']], 'test_recall': [metrics['recall']]}) df = df.append(df2) df.to_csv('results.csv', index=False)
def main(): # Gets currect directory path cdir = os.getcwd() # Gets all files .jpg inputs_train = glob.glob( str(cdir) + "../../subconjuntos/D1_ds0/inputs/*.jpg") # Gets all files .png targets_train = glob.glob( str(cdir) + "../../subconjuntos/D1_ds0/target/*.png") inputs_val = glob.glob(str(cdir) + "../../subconjuntos/TT_ds0/input/*.jpg") # Gets all files .png targets_val = glob.glob( str(cdir) + "../../subconjuntos/TT_ds0/target/*.png") # Sort paths inputs_train.sort() targets_train.sort() inputs_val.sort() targets_val.sort() # Parameters epochs = 100 batch_size = 1 depths = [1, 2, 3, 4, 5] loss_func = CategoricalCrossentropy() learning_rate = 1e-4 opt = Adam(lr=learning_rate) df = pd.DataFrame(columns=[ 'depth', 'loss_func', 'time elapsed during training', 'epochs', 'loss', 'val_loss', 'test_loss', 'test acc', 'test precision', 'test_recall' ]) fig, ax = plt.subplots(2, 1, figsize=(15, 15)) for depth in depths: opt = Adam(lr=learning_rate) # Fixes a initial seed for randomness np.random.seed(RANDOM_SEED) set_random_seed(RANDOM_SEED) X_train = [] Y_train = [] X_val = [] Y_val = [] # Iterates through files and extract the patches for training, validation and testing for i, _ in enumerate(inputs_train): x = plt.imread(inputs_train[i]) if len(x.shape) == 3: x = x[:, :, 0] X_train.append(fix_size(x, depth)) Y_train.append(fix_size(plt.imread(targets_train[i]), depth)) for i, _ in enumerate(inputs_val): x = plt.imread(inputs_val[i]) if len(x.shape) == 3: x = x[:, :, 0] X_val.append(fix_size(x, depth)) Y_val.append(fix_size(plt.imread(targets_val[i]), depth)) X_train = img_to_normal(np.array(X_train)[..., np.newaxis]) Y_train = img_to_ohe(np.array(Y_train)) X_val = img_to_normal(np.array(X_val)[..., np.newaxis]) Y_val = img_to_ohe(np.array(Y_val)) # Shuffles both the inputs and targets set indexes = list(range(0, len(inputs_val))) np.random.shuffle(indexes) X_val = X_val[indexes] Y_val = Y_val[indexes] X_val1 = X_val[:5] Y_val1 = Y_val[:5] X_val2 = X_val[5:10] Y_val2 = Y_val[5:10] mc = ModelCheckpoint("unet_{0}.hdf5".format(depth), monitor='val_loss', verbose=1, save_best_only=True, mode='min') # Initializes model model = UNet(depth) model.compile(loss=loss_func, optimizer=opt) # Trains models start = time.time() history = model.fit(X_train, Y_train, validation_data=(X_val1, Y_val1), epochs=epochs, batch_size=batch_size, verbose=2, callbacks=[mc]) end = time.time() # Plots some performance graphs loss = history.history['loss'] val_loss = history.history['val_loss'] np.save('history_{0}.npy'.format(depth), history.history) clear_session() epochs_range = list(range(0, len(loss))) ax[0].plot(epochs_range[1:], loss[1:], label='Depth {0}'.format(depth)) ax[0].xaxis.set_ticks(np.arange(0, 101, 5)) ax[0].yaxis.set_ticks(np.arange(0, 1, 0.1)) ax[0].set_title('Training loss - UNet') ax[0].set_xlabel('Epochs') ax[0].set_ylabel('Loss') ax[0].legend() ax[1].plot(epochs_range[1:], val_loss[1:], label='Depth {0}'.format(depth)) ax[1].xaxis.set_ticks(np.arange(0, 101, 5)) ax[1].yaxis.set_ticks(np.arange(0, 1, 0.1)) ax[1].set_title('Validation loss - UNet') ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Loss') ax[1].legend() fig.savefig('learning_curve.png') model = UNet(depth) model.load_weights("unet_{0}.hdf5".format(depth)) Y_pred = model.predict(X_val2) Y_pred = ohe_to_img(Y_pred) Y_val2 = ohe_to_img(Y_val2) metrics = calc_metrics(Y_val2, Y_pred) test_loss = loss_func(K.constant(Y_val2), K.constant(Y_pred)).numpy() df2 = pd.DataFrame( data={ 'depth': [depth], 'loss_func': ["CE"], 'time elapsed during training': [end - start], 'epochs': [len(loss)], 'loss': [np.amin(loss)], 'val_loss': [np.amin(val_loss)], 'test_loss': [test_loss], 'test acc': [metrics['accuracy']], 'test precision': [metrics['precision']], 'test_recall': [metrics['recall']] }) df = df.append(df2) df.to_csv('results.csv', index=False)
canvas2.configure(image=tkImage) canvas2.image = tkImage if self.repaired is not None: b, g, r = cv2.split(self.repaired) img = Image.fromarray(cv2.merge((r, g, b))) tkImage = ImageTk.PhotoImage(image=img) canvas3.configure(image=tkImage) canvas3.image = tkImage ################ CHOOSE UNET MODEL FOR PREDICTIONS model = UNet() model.compile(optimizer='adam', loss=['bce'], metrics=[ 'bce', 'accuracy', tf.keras.metrics.Precision(), tf.keras.metrics.Recall(), F1Score() ]) model.load_weights('bce_e1500_b32model.ckpt') ################################################## ############### INITIATE THE GUI window = tk.Tk() window.title('ReDust') window.geometry('450x300') canvas1 = tk.Label(window) canvas1.place(x=55, y=100) canvas2 = tk.Label(window) canvas2.place(x=175, y=100)
def main(): # Fixes a initial seed for randomness np.random.seed(RANDOM_SEED) set_random_seed(RANDOM_SEED) epochs = 100 batch_size = 1 depths = [1, 2, 3, 4, 5] loss_func = CategoricalCrossentropy() learning_rate = 1e-4 opt = Adam(lr=learning_rate) depth = 3 # Gets currect directory path cdir = os.getcwd() # Gets all files .jpg inputs_train = glob.glob( str(cdir) + "../../subconjuntos/D1_ds0/inputs/*.jpg") # Gets all files .png targets_train = glob.glob( str(cdir) + "../../subconjuntos/D1_ds0/target/*.png") inputs_val = glob.glob(str(cdir) + "../../subconjuntos/TT_ds0/input/*.jpg") # Gets all files .png targets_val = glob.glob( str(cdir) + "../../subconjuntos/TT_ds0/target/*.png") X_train = [] Y_train = [] X_val = [] Y_val = [] # Iterates through files and extract the patches for training, validation and testing for i, _ in enumerate(inputs_train): x = plt.imread(inputs_train[i]) if len(x.shape) == 3: x = x[:, :, 0] X_train.append(fix_size(x, depth)) Y_train.append(fix_size(plt.imread(targets_train[i]), depth)) for i, _ in enumerate(inputs_val): x = plt.imread(inputs_val[i]) if len(x.shape) == 3: x = x[:, :, 0] X_val.append(fix_size(x, depth)) Y_val.append(fix_size(plt.imread(targets_val[i]), depth)) X_train = np.array(X_train)[..., np.newaxis] Y_train = img_to_ohe(np.array(Y_train)) X_val = np.array(X_val)[..., np.newaxis] Y_val = img_to_ohe(np.array(Y_val)) # Shuffles both the inputs and targets set indexes = list(range(0, len(inputs_val))) np.random.shuffle(indexes) X_val = X_val[indexes] Y_val = Y_val[indexes] X_val1 = X_val[:5] Y_val1 = Y_val[:5] X_val2 = X_val[5:10] Y_val2 = Y_val[5:10] mc = ModelCheckpoint("unet.hdf5", monitor='val_loss', verbose=1, save_best_only=True, mode='min') es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5) # Initializes model model = UNet(depth) model.compile(loss=loss_func, optimizer=opt, metrics=['accuracy', Precision(), Recall()]) # Trains model start = time.time() history = model.fit(X_train, Y_train, validation_data=(X_val, Y_val), epochs=epochs, batch_size=batch_size, verbose=2, callbacks=[mc, es]) end = time.time() # Plots some performance graphs acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] precision = history.history['precision'] val_precision = history.history['val_precision'] recall = history.history['recall'] val_recall = history.history['val_recall'] df = pd.DataFrame( data={ 'acc': [np.amax(acc)], 'val_acc': [np.amax(val_acc)], 'loss': [np.amin(loss)], 'val_loss': [np.amin(val_loss)], 'precision': [np.amax(precision)], 'val_precision': [np.amax(val_precision)], 'recall': [np.amax(recall)], 'val_recall': [np.amax(val_recall)] }) epochs_range = list(range(0, len(acc))) fig, ax = plt.subplots(2, 2, figsize=(12, 12)) ax[0][0].plot(epochs_range, loss, 'bo', label='Training loss') ax[0][0].plot(epochs_range, val_loss, 'b', label='Validation loss') ax[0][0].set_title('Training and validation loss - UNet') ax[0][0].set_xlabel('Epochs') ax[0][0].set_ylabel('Loss') ax[0][0].legend() ax[0][1].plot(epochs_range, acc, 'bo', label='Training acc') ax[0][1].plot(epochs_range, val_acc, 'b', label='Validation acc') ax[0][1].set_title('Training and validation accuracy - UNet') ax[0][1].set_xlabel('Epochs') ax[0][1].set_ylabel('Accuracy') ax[0][1].legend() ax[1][0].plot(epochs_range, precision, 'bo', label='Training precision') ax[1][0].plot(epochs_range, val_precision, 'b', label='Validation precision') ax[1][0].set_title('Training and validation precision - UNet') ax[1][0].set_xlabel('Epochs') ax[1][0].set_ylabel('Precision') ax[1][0].legend() ax[1][1].plot(epochs_range, recall, 'bo', label='Training recall') ax[1][1].plot(epochs_range, val_recall, 'b', label='Validation recall') ax[1][1].set_title('Training and validation recall - UNet') ax[1][1].set_xlabel('Epochs') ax[1][1].set_ylabel('Recall') ax[1][1].legend() plt.subplots_adjust(hspace=0.5) fig.savefig('learning_curve.png') plt.clf() df.to_csv('results.csv')