예제 #1
0
def main():
    # Apply our decomposition estimator with reduction
    n_components = 70
    n_jobs = 1
    raw = True
    init = True

    mask, func_filenames = get_hcp_data(raw=raw)

    reduction_list = [1, 2, 4, 8, 12]
    alpha_list = [1e-2, 1e-3, 1e-4]

    Parallel(n_jobs=n_jobs, verbose=10)(delayed(run)(idx, reduction, alpha,
                                                     mask, raw, n_components,
                                                     init, func_filenames) for
                                        idx, (reduction, alpha)
                                        in enumerate(
        itertools.product(reduction_list, alpha_list)))
예제 #2
0
파일: hcp_compare.py 프로젝트: lesteve/modl
def main():
    # Apply our decomposition estimator with reduction
    n_components = 70
    n_jobs = 1
    raw = True
    init = True

    mask, func_filenames = get_hcp_data(raw=raw)

    reduction_list = [1, 2, 4, 8, 12]
    alpha_list = [1e-2, 1e-3, 1e-4]

    Parallel(n_jobs=n_jobs, verbose=10)(
        delayed(run)(idx, reduction, alpha, mask, raw, n_components, init,
                     func_filenames)
        for idx, (
            reduction,
            alpha) in enumerate(itertools.product(reduction_list, alpha_list)))
예제 #3
0
def main(output_dir, n_jobs):
    dir_list = [join(output_dir, f) for f in os.listdir(output_dir) if
                os.path.isdir(join(output_dir, f))]

    mask, func_filenames = get_hcp_data(raw=True)

    masker = NiftiMasker(mask_img=mask, smoothing_fwhm=None,
                         standardize=False)
    masker.fit()

    test_data = func_filenames[(-n_test_records * 2)::2]

    n_samples, n_voxels = np.load(test_data[-1], mmap_mode='r').shape
    X = np.empty((n_test_records * n_samples, n_voxels))

    for i, this_data in enumerate(test_data):
        X[i * n_samples:(i + 1) * n_samples] = np.load(this_data,
                                                       mmap_mode='r')

    Parallel(n_jobs=n_jobs, verbose=1, temp_folder='/dev/shm')(
        delayed(analyse_dir)(dir_name, X, masker) for dir_name in dir_list)
예제 #4
0
def get_init_objective(output_dir):
    mask, func_filenames = get_hcp_data(data_dir=data_dir, raw=True)

    masker = NiftiMasker(mask_img=mask, smoothing_fwhm=None, standardize=False)
    masker.fit()

    rsn70 = fetch_atlas_smith_2009().rsn70
    components = masker.transform(rsn70)
    print(components.shape)
    enet_scale(components.T, inplace=True)
    print(np.sum(np.abs(components), axis=1))
    test_data = func_filenames[(-n_test_records * 2)::2]

    n_samples, n_voxels = np.load(test_data[-1], mmap_mode='r').shape
    X = np.empty((n_test_records * n_samples, n_voxels))

    for i, this_data in enumerate(test_data):
        X[i * n_samples:(i + 1) * n_samples] = np.load(this_data,
                                                       mmap_mode='r')
    exp_var = {}
    for alpha in [1e-2, 1e-3, 1e-4]:
        exp_var[alpha] = objective_function(X, components, alpha)
    json.dump(open(join(output_dir, 'init_objective.json'), 'r'))
예제 #5
0
def get_init_objective(output_dir):
    mask, func_filenames = get_hcp_data(raw=True)

    masker = NiftiMasker(mask_img=mask, smoothing_fwhm=None,
                         standardize=False)
    masker.fit()

    rsn70 = fetch_atlas_smith_2009().rsn70
    components = masker.transform(rsn70)
    print(components.shape)
    enet_scale(components.T, inplace=True)
    print(np.sum(np.abs(components), axis=1))
    test_data = func_filenames[(-n_test_records * 2)::2]

    n_samples, n_voxels = np.load(test_data[-1], mmap_mode='r').shape
    X = np.empty((n_test_records * n_samples, n_voxels))

    for i, this_data in enumerate(test_data):
        X[i * n_samples:(i + 1) * n_samples] = np.load(this_data,
                                                       mmap_mode='r')
    exp_var = {}
    for alpha in [1e-2, 1e-3, 1e-4]:
        exp_var[alpha] = objective_function(X, components, alpha)
    json.dump(open(join(output_dir, 'init_objective.json'), 'r'))
예제 #6
0
파일: blas_hcp.py 프로젝트: ml-lab/modl
# Author: Arthur Mensch
# License: BSD
# Adapted from nilearn example

import time
from os.path import expanduser

import numpy as np
from nilearn.datasets import fetch_atlas_smith_2009

from modl._utils.system.mkl import num_threads
from modl.datasets.hcp import get_hcp_data
from modl.spca_fmri import SpcaFmri

mask, func_filenames = get_hcp_data(data_dir='/storage/data')

func_filenames = func_filenames[:2]

# Apply our decomposition estimator with reduction
n_components = 70
n_jobs = 20
raw = True
init = True

dict_fact = SpcaFmri(mask=mask,
                     smoothing_fwhm=3,
                     shelve=not raw,
                     n_components=n_components,
                     dict_init=fetch_atlas_smith_2009().rsn70 if init else None,
                     reduction=12,
                     alpha=0.001,