dts.append(dt)
    return ids, dts


def convert2date(x, fmt="%Y-%m-%d %H:%M:%S"):
    from datetime import datetime as dt
    return dt.strptime(x.split(".")[0], fmt).date()


import datetime

from scipy.interpolate import interp1d as spline

if __name__ == "__main__":

    d = data("./consensusPredictionData")
    predictions = d.importPredictions()

    d = data("./analysisData/")
    quantiles = d.importQuantiles()

    toaQids = d.timingOfApprovalQids()

    toaPreds = predictions.loc[toaQids]
    toaQuants = quantiles.loc[toaQids]
    toaQuants["value"] = toaQuants["value"].astype("datetime64[ns]")

    gd = data("./consensusPredictionData/")
    indivForecasts = gd.importIndividualForecasts()

    resolutions = indivForecasts.reset_index()
예제 #2
0
    if legend:
        leg = ax.legend(loc="upper center",
                        fontsize=10,
                        ncol=3,
                        bbox_to_anchor=(1.1, 1.35),
                        frameon=False,
                        handletextpad=0.075,
                        labelspacing=0.01,
                        columnspacing=0.15)
    else:
        ax.get_legend().remove()


if __name__ == "__main__":

    gd = data("./consensusPredictionData/")
    individualScores = gd.importIndividualScores().reset_index()
    consensusScores = gd.importConsensusScores().reset_index()
    consensusScores["standin_id"] = consensusScores.expert + 900

    # rank scores
    def rankforecasters(x):
        x["rank"] = x.logscore.rank() / len(x)
        return x

    individualAndConsScores = individualScores.append(consensusScores)
    individualAndConsRanks = individualAndConsScores.groupby(
        ["qid"]).apply(rankforecasters)

    individualRanks = individualAndConsRanks.loc[
        individualAndConsRanks.standin_id < 900]